
CSCI 141 - Fall 2019
Assignment 5: Cancer Classification using Machine Learning

Due Date: Monday, December 2nd 2019

1 Overview

The goal of this project is to gain more practice with using functions, lists and dictionaries and
gain some intuition for Machine Learning, the field of computer science concerned with writing
algorithms that allow computes to “learn” from data.

The problem we’ll be solving is as follows: Given a data file containing hundreds of patient
records with values describing measurements of cancer tumors and whether or not each tumor
is malignant or benign, develop a simple rule-based classifier that can be used to predict whether
an as-yet-unseen tumor is malignant or benign.

The general idea is that malignant tumors are different than benign tumors. Malignant tumors
tend to have larger radii, to be more smooth, to be more symmetric, etc. Measurements have
been taken on many tumors whose class (malignant or benign) is known. The code you are
going to write will get the average score across all the malignant tumors for an attribute (e.g.
‘area’) as well as the average score for that attribute for benign tumors. Let’s say that the
average area for malignant tumors is 100, and for benign tumors is 50. We can then use that
information to try to predict whether a given tumor is malignant or benign.

Imagine you are presented with a new tumor and told the area was 99. All else being equal,
we would have reason to think this tumor is more likely to be malignant than had its area
been 51. Based on this intuition, we are going to create a simple classification scheme. We
will calculate the midpoint between the malignant average and the benign average (75 in our
hypothetical example), and simply say that for each new tumor, if its value for that attribute
is greater than or equal to the midpoint value for that attribute, that is one vote for the tumor
being malignant. Each attribute that we are using produces a vote, and at the end of counting
votes for each attribute, if the malignant votes are greater than or equal to the benign votes,
we predict that the tumor is malignant.

2 Machine Learning Framework

“Machine learning” is a popular buzzword that might evoke computer brain simulations, or
robots walking among humans. In reality (for now, anyway), machine learning refers to some-
thing less fanciful: algorithms that use previously observed data to make predictions about
new data. It may sound less glamorous than fully sentient robots, but that’s exactly what was
described above! You can get more sophisticated about the specifics of how you go about this,
but that’s the core of what machine learning really means.

If using data to make predictions on new data is our goal, you might think it makes sense to use
all the data we have to learn from. But in fact, if we truly don’t know the labels (e.g., malignant
or benign) of the data we’re testing our algorithm on, we won’t have any idea whether it’s doing
a good job! For this reason, it makes sense to split the data we have labels for into a training



set, which we’ll use to “learn” from, and a test set, which we’ll use to evaluate how well the
algorithm does on new data (i.e., data it wasn’t trained on). We will take about 80% of the
data as our training set, and use the remaining 20% as our test set.

2.1 Training Phase

Here’s how our classifier will work: In the training phase, we will “learn” (read: compute) the
average value each attribute (e.g. area, smoothness, etc.) among the malignant tumors. We
will also “learn” (again: compute) the average value of each attribute among benign tumors.
Then we’ll compute the midpoint for each attribute. This collection of midpoints, one for each
attribute, is our classifier.

2.2 Testing Phase

Having trained our classifier, we can now use it to make an educated guess about the label of
a new tumor if we have the measurements of all of its attributes. Our educated guess will be
pretty simple:

• If the tumor’s value for an attribute is greater than or equal to the midpoint value for
that attribute, cast one vote for the tumor being malignant.

• If the tumor’s attribute value is less than the midpoint, cast one vote for the tumor being
benign.

• Tally up the votes cast according to these rules for each of the ten attributes. If the
malignant votes are greater than or equal to the benign votes, we predict that the tumor
is malignant.

If we want to use this classifier to diagnose people, we have an important question to answer:
how good are our guesses? To answer this question, we’ll run test our algorithm on the 20% of
our data that we held out as the test set, which we didn’t use to train the classifier, but we do
know the correct labels. Our rate of accuracy on these data should be indicative of how well
our classifier will do on new, unlabeled tumors.

3 Dataset Description

You have been provided with cancerTrainingData.txt, a text file containing the 80% of the
data that we’ll use as our training set.

The file has many numbers per patient record, some of which refer to attributes of the tumor.
The skeleton code includes the function make_training_set(), which reads in the important
information from this file and produces a list of dictionaries. Each dictionary contains attributes
for a single tumor as follows:

0. ID



1. radius
2. texture
3. perimeter
4. area
5. smoothness
6. compactness
7. concavity
8. concave
9. symmetry

10. fractal
11. class

The middle 10 attributes (numbered 1 through 10) are the numbers that describe the tumor.
The first attribute is just the patient ID number, and the last attribute is the actual real life
state of the tumor, namely, malignant (represented by “M”) or benign (represented by “B”).

We don’t need to know what these attributes mean: all we need to know is that they are
measurements of the tumors, and that benign and malignant tumors tend to have different
attribute values. For these 10 tumor attributes when comparing to the midpoint values, higher
numbers indicate malignancy. Pictorially, the list of dictionaries looks like this (two are shown,
but the list contains many more than that):

dict 
ID 897880 

radius 10.05 

texture 17.53 

perimeter 64.41 

area 310.8 

smoothness 0.1007 

compactness 0.07326 

concavity 0.02511 

concave 0.01775 

symmetry 0.189 

fractal 0.06331 

class B 

list 

. . . 

training_set 

dict 

ID 89812 

radius 23.51 

texture 24.27 

perimeter 155.1 

area 1747 

smoothness 0.1069 

compactness 0.1283 

concavity 0.2308 

concave 0.141 

symmetry 0.1797 

fractal 0.05506 

class M 

Figure 1: Illustration of the data layout of the training set returned by make training set

The dictionary stored in the 0th spot in the list gives the attributes for the 0th tumor:
training_set[0]["class"] gives the true class label (in this case, ”B” for benign) of the
0th tumor.



4 Getting Started

Download the skeleton code (cancer_classifier.py), training set (cancerTrainingData.txt),
and the test set (cancerTestingData.txt). Make sure all three files are in the same directory,
or the main program will not be able to load the data from the files.

In some browsers, clicking the link to each data file simply opens the file in your browser, which
isn’t helpful. To download the data files, I recommend right-clicking the link from Canvas or
the course webpage and selecting “Save File As...”, or your browser’s equivalent. Choose the
same location as you’ve saved the skeleton code and save the files without changing their names
to be sure that the program will be able to read them correctly.

5 Tasks

5.0 Overview

Training and evaluating our classifier involves several steps. The first task, which has been
done for you, is to write code to load the training and test data sets from text files into lists
of dictionaries representing patient records, as described in the previous section. The functions
make_training_set and make_test_set are included in the skeleton code to complete these
steps.

You will complete the following four tasks:

• TODO 1: Train the classifier

• TODO 2: Apply the classifier to the test set

• TODO 3: Calculate and report accuracy on the test set

• TODO 4: Provide classifier details on user-specified patients

The main program has been provided to you: you will be implementing functions that are called
from the main program at the bottom of the skeleton code file. Take a moment to read through
and understand the main program (notice that the parts of the program that use TODOs 1–4
are commented out).

Each of the above steps is described in detail in the remainder of this section. After you finish
each TODO (2 and 3 are completed together), uncomment the corresponding block in the main
program and run your code to make sure your output matches the sample output provided
below.

5.1 TODO 1: Train the classifier

A classifier is simply some model of a problem that allows us to make predictions about new
records. We use the training set to build up a simple model, as described in Section 2:



• For all malignant records, calculate the average value of each attribute.

• For all benign records, calculate the average value of each attribute.

• Calculate the midpoint between these averages for each attribute.

Our classifier is a single dictionary that stores this midpoint value for each attribute.

Implement this functionality in train_classifier. My solution for this part totals roughly 30
lines of code. As always, you may find it useful to write helper methods that perform smaller
tasks: for example, you could create a helper function to initialize a dictionary with each of the
attributes as keys and 0 as values.

When done, uncomment the block of code in the main program that calls train_classifier
and debug your code until your attribute midpoints match the sample output.

5.2 TODO 2: Apply the classifier

After computing the classifier (namely, the dictionary of attribute midpoints), we can use these
values to make predictions given the attribute values of a new patient. A record is classified as
follows:

For each attribute, determine whether the record’s value is less than or equal to the classifier’s
midpoint value. If so, cast one vote for Benign; otherwise, cast one vote for Malignant. If the
votes for Malignant are greater than or equal to the votes for Benign, the record is classified as
Malignant; otherwise, it is classified as Benign.

Implement this classification scheme in the classify function, applying it to each record in
the test set. Notice that the prediction for a record is to be stored in the "prediction" field
of the dictionary for that record.

5.3 TODO 3: Report accuracy

For each record in the test set, compare the predicted class to the actual class. Print out the
percentage of records that were labeled correctly (i.e., the predicted class is the same as the
true class).

5.4 TODO 4: Provide patient details

The final task is to provide a user the opportunity to examine the details of the predictions made
for individual patients. Implement check_patients, which contains commented pseudocode
describing its the exact behavior. You are strongly encouraged to write helper functions that
are called from within this function: if a pseudocode step requires more than a few lines of
code, consider making a helper function to accomplish that step.

If the user-specified patient ID is found in the test set, print a table with four columns:

• Attribute: the name of the attribute



• Patient: the patient’s value for that attribute

• Classifier: the classifier’s threshold (midpoint) for that attribute

• Vote: the vote cast by the classifier on for that attribute

See the sample output for specifics of what the table should look like.

Printing a table of results with nice even columns and uniformly formatted decimal numbers
requires delving into the details of string formatting in Python. There are multiple ways to do
this, but the following tips should be sufficient1:

• String objects have rjust and ljust methods, which return a copy of the string padded
to the given width, justified either right or left. For example, "abc".rjust(5) returns
" abc".

• Floating point numbers can be formatted nicely using the format method, which is called
on strings containing special formatting specifiers. For example, "{:.2f}".format(8.632)
formats the argument (8.632) as a float with 2 digits after the decimal, resulting in the
string "8.63".

Your table does not need to match the sample output character for character, but for full credit
your columns should be lined up, right justified, and floating-point values should be printed
with the decimals aligned and a consistent number of digits following the decimal point.

6 Sample Output

A sample run of my solution program is shown below. User input is bolded.

Reading in training data...

Done reading training data.

Reading in test data...

Done reading test data.

Training classifier...

Classifier cutoffs:

radius: 14.545393772893773

texture: 19.279093406593404

perimeter: 94.91928571428579

area: 693.337728937729

smoothness: 0.09783294871794869

compactness: 0.1104729532967033

concavity: 0.09963735815018318

concave: 0.054678068681318664

symmetry: 0.18456510989010982

1For much more detail on string formatting, see the Python Tutorial entry: https://docs.python.org/3/
tutorial/inputoutput.html



fractal: 0.06286657967032966

Done training classifier.

Making predictions and reporting accuracy

Classifier accuracy: 92.20779220779221

Done classifying.

Enter a patient ID to see classification details: 897880

Attribute Patient Classifier Vote

radius 10.0500 14.5454 Benign

texture 17.5300 19.2791 Benign

perimeter 64.4100 94.9193 Benign

area 310.8000 693.3377 Benign

smoothness 0.1007 0.0978 Malignant

compactness 0.0733 0.1105 Benign

concavity 0.0251 0.0996 Benign

concave 0.0177 0.0547 Benign

symmetry 0.1890 0.1846 Malignant

fractal 0.0633 0.0629 Malignant

Classifier’s diagnosis: Benign

Enter a patient ID to see classification details: 89812

Attribute Patient Classifier Vote

radius 23.5100 14.5454 Malignant

texture 24.2700 19.2791 Malignant

perimeter 155.1000 94.9193 Malignant

area 1747.0000 693.3377 Malignant

smoothness 0.1069 0.0978 Malignant

compactness 0.1283 0.1105 Malignant

concavity 0.2308 0.0996 Malignant

concave 0.1410 0.0547 Malignant

symmetry 0.1797 0.1846 Benign

fractal 0.0551 0.0629 Benign

Classifier’s diagnosis: Malignant

Enter a patient ID to see classification details: quit

7 Hints and Guidelines

• Start by reading through the skeleton code, and making sure you know what the main
program does and how the functions you are tasked with implementing fit into the overall
program.

• If your understanding of lists and dictionaries is shaky, you will have great difficulty
making progress. Visit my office hours, TA office hours, or mentor hours early so you
don’t spend too much time struggling.

• The top of the skeleton file has a global variable called ATTRS, which is a list of the
attribute names each patient record has. Using global variables with all-caps names is
a common convention when you have variables that need to be referenced all over your



program and (crucially) never change value. You may refer to ATTRS from anywhere in
your program, including inside function definitions, without passing it in as a parameter.

• As in A4, all variables (other than ATTRS) referenced from within functions must be local
variables - if you need access to information from outside the function, it must be passed
into the function as a parameter.

• When iterating over patient record dictionaries, use loops over the keys stored in ATTRS
rather than looping directly over the dictionary’s keys. An example of this appears in the
main program where the classifier cutoffs are printed.

• The functions provided in the skeleton code include headers and specifications. Make sure
you follow the given specifications (and don’t modify them!).

• Keep the length of each function short: if you’re writing a function that takes more than
about 30 lines of code (not including comments and whitespace), consider how you might
break the task into smaller pieces and implement each piece using a helper function.

• All helper functions you write must have docstrings with precise, clearly written specifi-
cations.

• Test each function after you’ve written it by running the main program with the corre-
sponding code block uncommented. Don’t move on until the corresponding portion of the
output matches the sample.

Submission

Upload cancer_classifier.py to Canvas and fill in the A5 Hours quiz with an estimate of
how many hours you spent working on this assignment.



Rubric

Submission Mechanics (2 points)
File called cancer_classifier.py is submitted to Canvas 2

Code Style and Clarity (28 points)
Comment at the top with author/date/description 3

Comments throughout code clarify any nontrivial code sections 5

Variable and function names are descriptive 5

Helper functions are used to keep functions no longer than about 30 lines of
code (not counting comments and blank lines)

5

ATTRS is used to iterate over dictionary attributes 5

No global variables except ATTRS are referenced from within functions 5

Correctness (70 points)
The trained classifier has the correct midpoint values for each attribute 30

Prediction is performed as described using the midpoints computed in training 5

Accuracy is computed and reported correctly as shown in the demo output 10

User is repeatedly prompted for Patient ID 5

Message is printed if given ID is not in the test set. 5

If ID is in the test set, table is printed with all four columns and rows for all 10
attributes

10

Table columns are right-justified and aligned 3

Floating-point values in the table are lined up on the decimal point and have a
fixed number of digits after the decimal.

2

Total 100 points

Acknowledgements

This assignment was adapted from a version used by Perry Fizzano, who adapted it from an
original assignment developed at Michigan State University for their CSE 231 course.

8 Challenge Problem

The following challenge problem is worth up to 10 points of extra credit. As usual, this can
be done using only material we’ve learned in class, but it’s much more open-ended. If you are
trying to tackle this, feel free to come talk to me about it in office hours.

In this assignment, you trained a simple classifier that used means over the entire training set
to classify unseen examples. This simple classifier does quite well (92% accuracy) on the test
set. There are many more sophisticated methods for learning classifiers from training data,
some of which depend on some pretty heavy-duty mathematical derivations.

One type of classifier that doesn’t require a lot of math but nonetheless performs pretty well
on a lot of real-world problems is called the Nearest Neighbor Classifier or its more general
cousin, the K Nearest Neighbors Classifier. The idea behind KNN is that records with
similar attributes should have similar labels. So a reasonable way to guess the label of a



previously-unseen record is to find the record from the training set that is most similar to it
and guess that record’s label.

To implement a nearest neighbor classifier, we need some definition of what it means to be
”near”. One of the the simplest choices for numerical data like ours is the Sum of Squared
Differences metric. Given two records, compute the difference between the two records’ values,
square the difference, and add up all the squared differences over all 10 attributes. The smaller
the SSD metric, the more similar the two records are.

(up to 5 points) Implement a nearest neighbor classifier using the SSD metric in a file called
KNN.py. Feel free to copy and re-use the data loading functions, and any other functions that
remain relevant, from cancer_classifier.py. Evaluate your classifier’s accuracy like we did
in the base assignment. Write a comment in KNN.py reporting your classifier’s performance.

You might notice an issue with the SSD metric applied to our dataset: some attributes have
huge values (e.g., in the hundreds) and others have tiny values. When computing SSD, the
large-valued attributes will dominate the SSD score, even if they aren’t the most important
attributes. Come up with a way to modify the distance metric so that it weights attributes
evenly. Describe your approach and compare the performance of your new metric with SSD in
a comment in KNN.py.

(up to 5 points) The nearest neighbor classifier can be a bit fiddly, because the guess depends
on a single datapoint in your training set, so a single unusual (or mislabeled!) training record
could cause a wrong prediction. A more robust classifier looks not just at the single nearest
neighbor, but each of K nearest neighbors, for some choice of K. Generalize your nearest
neighbor classifier to a KNN classifier. Try out different values of K and include a comment
discussing the classification accuracy for values of K. Do any of them beat the base assignment
classifier’s performance?


