
CSCI 141 - Fall 2019
Assignment 3

Topics: Conditionals and Loops

Reminder: You can discuss this assignment with your peers. However, the answers to the
questions and programming solution MUST be your own. You cannot copy another person’s
code, you cannot have another person tell you what code to type, etc. If any part of this is
unclear, please come see me.

1 Fibonacci Numbers and the Golden Ratio

The Fibonacci sequence is an interesting mathematical curiosity. The beginning of the sequence
looks like this:

f0 f1 f2 f3 f4 f5 f6 f7 . . .

0 1 1 2 3 5 8 13 . . .

You might be able to spot the pattern: after the first two terms are given (0 and 1), the next
term in the sequence is always the sum of the prior two terms.

The Fibonacci sequence is simple to define and not too hard to compute, but it has some
surprisingly deep mathematical properties. The Fibonacci sequence and related concepts show
up in patterns in nature all the time (try searching the internet for “Fibonacci in nature” for
some examples). One interesting property of the sequence is that the ratio between each pair of
terms in the sequence (i.e., fn/fn−1) converges to the golden ratio, which is often written using
the Greek letter φ (“phi”). The value of this constant is roughly 1.61803398875, although the
digits keep going forever.

Write a program that takes a single integer command line argument, n, prints fn, the nth
Fibonacci number, then prints an estimate of the golden ratio computed using fn and fn−1.
Notice that because the terms are numbered starting at zero, f3 is actually the fourth number
in the sequence, so be careful to get the correct one.

You may assume that n is greater than zero (you are not required to check for bad user input
where n <= 0. When n is 1, the golden ratio calculation is 1/0, so your program should print
“infinity” for the golden ratio estimate when n = 1.

A couple sample outputs are given in Figure 1 below.

Testing

At this point you should know enough to test this program thoroughly. You are responsible for
making sure it works for all valid inputs.

1



Figure 1: Sample runs of fib.py

2 Latin Squares

A Latin Square is an n*n table filled with n different symbols in such a way that each symbol
occurs exactly once in each row and exactly once in each column (see http://en.wikipedia.

org/wiki/Latin_square). For example, here are two possible Latin Squares of order (i.e., side
length) 4:

1 2 3 4 3 4 1 2

2 3 4 1 4 1 2 3

3 4 1 2 1 2 3 4

4 1 2 3 2 3 4 1

Your program should take two command line arguments. The first argument is an integer
specifying the order (side length) of square. The second one is the top-left number of the
square, which should be an integer between 1 and the order. If the second argument is not in
this range, your program should print a message saying so and terminate. Your program will
print the corresponding Latin Square.

Sample outputs are given in Figure 2 below.

Figure 2: Sample runs of latin.py

2.1 Testing

At this point you should know enough to test this program thoroughly. You are responsible for
making sure it works for all valid inputs.

2

http://en.wikipedia.org/wiki/Latin_square
http://en.wikipedia.org/wiki/Latin_square


3 Guessing Game

You are a computer programmer working for a company, called NostalgiaSoft, that makes legacy
(old-style, text-only) games for old people who were using computers in the early 1980s. The
game you have been tasked to write is a simple guessing game. The program is run with a
command line argument specifying how many guesses the player is allowed, and the player is
given that many chances to guessing a secret two-character sequence. Because the game is to be
marketed to alumni of Western Washington University, the letters are selected from the letters
in the word bellingham. See the sample screen shots in Figure ?? for sample gameplay.

Figure 3: Two sample runs of the guessing game.py. The left example is run in DEBUG
mode, while the right example is in PLAYER mode.

Game Modes

To satisfy the strict guessing-game industry regulations, the game must be able to run in two
modes: DEBUG mode and PLAYER mode. In DEBUG mode, the correct secret letters are
given to the program via command line arguments; in PLAYER mode, the secret letters are
chosen randomly by the program. Otherwise, the program’s behavior is the same in both modes.

3.1 Command Line Arguments

To run in PLAYER mode, the program takes two command line arguments. To run in DEBUG
mode, the program takes three command line arguments.

Guesses. In both modes, the first argument is an integer specifying the number of guesses the
player is allowed. You may assume this number is nonnegative, but your program should be
able to handle any number of guesses 0 or larger.

Game Mode. The second argument determines the game mode:

• If the second argument is “PLAYER”, the game is in PLAYER mode and the secret

3



letters are chosen randomly.

• If the argument is anything else, the game is in DEBUG mode and the program takes
three arguments, the second and third of which give the two secret letters.

You should assume that the program is run with two arguments, the second of which is
“PLAYER”, or three arguments, the second and third of which are each length-1 strings con-
taining letters from the word “bellingham”. Your program is not required to verify that this
is true before proceeding.

3.2 Pseudocode

Your manager has provided you with the following pseudocode that outlines the program’s
behavior:

1. The program prints a brief blurb that explains the game to the user.

2. If the game is in PLAYER mode, the program randomly chooses two secret letters from
among the letters of the word bellingham. Because the letters are chosen independently,
both the first and second secret letters might be the same. If the game is in DEBUG mode,
the secret letters are the ones supplied in the second and third command line arguments.

3. Next, the guessing phase of the program begins. While the player still has guesses re-
maining (the initial number of guesses is given by the first command line argument), the
game prompts the user to guess a letter.

4. For each of the two secret letters that has not already been correctly identified in a prior
guess, the program prints a message stating whether the guess was correct or not. Notice
that once a letter has been guessed correctly, output for subsequent guesses should not
mention that letter. The user may guess the letters in any order (i.e., they do not need
to guess the first letter correctly before guessing the second letter).

5. If the player has successfully guessed both letters, the program prints “You win” and
terminates right away, even if the player has guesses remaining.

6. If the player has not exhausted their number of guesses, go back to step 3 (prompt for
another guess).

7. If the player runs out of guesses before guessing both letters correctly, the program prints
a message that tells the player they’ve run out of guesses and reveals the correct secret
letters.

Write your program in a file called guessing game.py. This game can be implemented many
different ways. Declare and use as many variables as you need to keep track of guesses and
secret letters. The logic for a sample ”you lose” game play is shown below.

Program is run as: python3 guessing game.py 4 PLAYER

Number of Guesses is 4

Program is in PLAYER mode, so secret letters are randomly chosen. Secret letters are:
bh

4



User Guess 1: b

Game Response: You have guessed the first letter. The second letter is not b.

User Guess 2: g

Game Response: The second letter is not g.

User Guess 3: l

Game Response: The second letter is not l.

User Guess 4: e

Game Response : You are out of tries. Game over. The secret letters were b and h.

3.3 Testing

The advantage of implementing DEBUG mode is that it makes testing a lot easier–you can
choose the secret letters carefully to test the various possible outcomes. In particular, you
should be sure to test all combinations of guessing patterns and secret letter scenarios. Here’s
a non-comprehensive list of things to consider, just to get you started:

• The user guesses one letter correctly, then the other before they run out of guesses.

• The user guesses one letter correctly, but not the other before running out of guesses.

• The user guesses neither letter correctly before running out of guesses.

• The user is given zero, one, or many guesses

• The user guesses the letters in or out of order (first then second, second then first)

• The letters are the same and the user guesses them, or runs out of tries.

• Finally, test that PLAYER mode works too - make sure that the secret letters are gener-
ated randomly, all letters in bellingham are possible, and it’s possible for the two letters
to be the same.

Submission

Make sure your programs are thoroughly tested, check over the rubric, and upload fib.py,
latin.py, and guessing game.py to Canvas. Fill out the A3 Hours quiz on Canvas with an
estimate of how many hours you spent on this assignment.

5



Rubric - 54 points total

Style Points (6 points)
Author, date, and program description given in a comment at the top of the file 3 points

Code is commented adequately and variables are appropriately named 3 points

fib.py (10 points)
n is supplied as the first command line argument 1 point

Correct Fibonacci number is printed 5 points

Correct Golden ratio estimate is printed 3 points

Golden ratio estimate is “infinity” when n = 1 1 points

latin.py (10 points)
Command line arguments provide inputs 1 point

Square is the correct size 2 points

Square has each value once per row and once per column 5 points

Program prints a message and terminates if the top left number is not in the valid
range

2 points

guessing game.py (28 points)
Reads the number of guesses from the first command line argument 1

Determines the game mode based on the second command line argument 1

In PLAYER mode, two random characters are chosen from the letters in bellingham 4

In DEBUG mode, the two secret characters are taken from the second and third command
line arguments

2

The user is given the correct number of guesses 4

The program specifies which (if any) of the secret letters have been guessed correctly
after each guess

4

Letters that have been guessed correctly are not mentioned in the output for later guesses. 4

Once both letters are guessed, the program tells the player they’ve won and terminates
immediately even if there are guesses remaining.

4

If the player loses, the answer is revealed. 4

6



4 Challenge Problem

This challenge problem is worth two points of extra credit: Write a program that takes a single
non-negative decimal integer as a command line argument, then prints the binary representation
of the number with no leading zeros.

Submit your Challenge Problem solution in a file named binary.py.

7


	Fibonacci Numbers and the Golden Ratio
	Latin Squares
	Testing

	Guessing Game
	Command Line Arguments
	Pseudocode
	Testing

	Challenge Problem

