
CSCI 141
Fall 2019

Assignment 2
Topics: Variables, Boolean logic, Conditionals

For this assignment, you will complete three programming problems. There is also an optional
challenge problem at the end for those interested in a nominal amount of extra credit.

Getting Started

Review the labs and lecture slides to review. Topics needed to complete this assignment will be
covered well before the deadline. As usual, seek help early if you get stuck: come talk to me or
the TAs during office hours, or visit the CS mentors for help. Please keep track of approximately
how much time you spend on both portions of this assignment. You will be asked to report
your estimate on Canvas after you submit.

Reminder: You can discuss this homework with your peers. However, the answers to the
questions and programming solution MUST be your own. You cannot copy another person’s
code, you cannot have another person tell you what code to type, etc. If any part of this is
unclear, please come see me.

1 Drinking Age Check

Write a program called cardme.py that asks the user to input their birth year and birth month
(as a number) and determines if the user is of legal drinking age. Assume the program is
running at 12:01 am on October 1 so you don’t have to look at the day of the person’s birth
but only the person’s birth month and year. Recall that the legal drinking age in Washington
is 21 so anyone born in September 1998 or before is legal.

Your output does not need to match the sample output word for word, but the response should
convey the same information, namely whether or not the user is over the legal drinking age.

Two sample invocations are shown in Figure 1 below.

Figure 1: Two sample invocations of cardme.py

1



Testing

As we move forward in the course, you will be increasingly held responsible for testing your
code. Whereas in A1 you were given test cases for all the problems, we only provide test cases
for some of the problems here. To test a program thoroughly, you should try at least one set
of inputs for each possible scenario that your program could encounter. You’ll gain experience
coming up with comprehensive test cases in time; for this problem, try to come up with test
cases that check your program’s behavior in each of the following situations:

• The user enters a year that is earlier than 1998.

• The user enters a year that is later than 1998

• The user enters the year 1998 and a month earlier than October

• The user enters the year 1998 and a month later than October

• The user enters the year 1998 and the month October

If your program gives the correct output in all of those situations, you should be in good shape!

2 A Quadratic Formula Solver

Continuing from A1 on your mission to help students “check their answers” on their math
homework, you are now working on a product for somewhat more advanced students. In
particular, you’ve been tasked with writing a module that can be used to verify students’
calculations involving the quadratic formula.

Write a program called quadratic.py that takes three floating-point numbers as command line
arguments representing the coefficients a, b, and c in the quadratic equation y = ax2 + bx + c,
and print out the roots of the parabola represented by this equation.

It’s been a while since I took algebra class, so in case you, too need a refresher: a quadratic
equation of the form y = ax2 + bx+ c takes the shape of a parabola; the roots of the quadratic
are the values of x for which y = 0. The so-called “quadratic formula” for finding these roots
(i.e., the values of x where the parabola intersects the x axis) is:

x =
−b±

√
b2 − 4ac

2a

How do I compute the square root of a number in Python? There are a couple ways to
do it, but the one I recommend here uses a fact you may remember from math class:

√
x = x(

1
2
).

In other words, raising a number to the power of 0.5 is equivalent to taking its square root.

Some facts to remember about this formula:

• The ± symbol means “plus or minus”; that means that in general there are two roots,
one of which is computed using a plus here and the other is computed using a minus.

• If a is 0, the formula would result in division by zero, which is undefined.

• If b2− 4ac (called the discriminant) is negative, the result of the square root is undefined
and there are no roots (actually there are roots but they are complex; for purposes of this
problem let’s keep it real).

2



• In the special case that the parabola’s minimum (or maximum, if a is negative) is on the
x axis, there’s only one root, and the “plus” version of the formula will give the same
value as the “minus” version.

Your program should behave as follows to handle the special cases described above:

• If a is 0, your program should output a message saying that the coefficients do not describe
a quadratic.

• If the discriminant is negative, your program should output a message telling the user
that there are no real roots.

• Otherwise, your program should print out both roots on the same line, separated by a
space.

• If there’s only one root, your program may simply print the same value twice. If that
root is zero, it’s okay if it prints one of the zeros with a negative sign1

A few sample runs of quadratic.py are shown in Figure 2.

Figure 2: Sample outputs for quadratic.py. The command line arguments provided in the
“Program arguments” box of Thonny are shown in gray text in the shell.

Testing

You should be sure to make sure your code behaves correctly in the following situations:

• A case where a is zero

• A case the discriminant is negative

• Cases where a is positive and negative

• A case where the same root gets printed twice.

1It turns out that because of how floating point numbers are stored, 0.0 and -0.0 are stored as two different
numbers! Don’t worry though: 0.0 == -0.0 => True, as you would hope.

3



3 A fun game involving Fungi

Suppose that you are a programmer for a game development company called Fungi. The text
adventure game being prepared for launch involves a character meandering through the forest,
during which they find and pick up mushrooms.

Your task is to write code for a portion of the game in which the role-playing character en-
counters a chef who wants to exchange some of the gathered mushrooms for rubies. The chef
exchanges mushrooms for rubies according to her secret formula (explained below).

The chief game designer has given you the below pseudocode that explains the mechanics that
your python program should implement. The chief software engineer has also instructed you
to use no more than 10 if and elif keywords (else keywords are not included in this
count).

• Prompt the player to specify how many shiitake mushrooms were found and picked up

• Prompt the player to specify how many portobello mushrooms were found and picked up

• Include a narrative of how the player is meandering through the forest

• The chef asks the player how many of the shiitake mushrooms they’d like to trade

• The chef asks the player how many of the portobello mushrooms they’d like to trade

– If the player specifies that they want to trade more mushrooms (of either kind) than
have been collected, the chef ends the conversation (the program ends; it should not
throw an error).

– If the player specifies to trade a total of zero mushrooms (i.e., the sum of both
mushroom types), the chef ends the conversation (the program ends; it should not
throw an error).

– If the player wants to trade their mushrooms, then the chef will offer rubies according
to the following exchange rules (the chef’s secret formula):

Number Shiitake Player
is Willing to Trade

Number Portobello
Player is Willing to
Trade

Rubies Offered by Chef

Fewer than 10 Fewer than 5 Twice the number of Shiitake
offered for trade

Fewer than 10 5 or more Three times the number of
Portobello offered for trade

Multiple of 12 but NOT
a multiple of 24

20 or more Four times the number of Por-
tobello offered for trade

Multiple of 12 but NOT
a multiple of 24

Fewer than 20 The number of Portobello of-
fered for trade

A number of Shiitake
mushrooms different
than any of the 4 above
choices

Any Five times the number of Shi-
itake offered for trade

• The chef should ask the player if they want to make the exchange. If the player enters y,
yes, or Yes, the program should output the number of rubies that the player walks away

4



with, as well as the number of portobello and shiitake mushrooms that the player retains.
Otherwise, the program should output the number of portobello and shiitake mushrooms
the player walks away with.

Two sample invocations of the program are shown in Figure 3:

Figure 3: Sample outputs for quadratic.py

Testing

For this problem, we’ve provided you with some test cases in the table below. Note that these
sample inputs are not guaranteed to be an exhaustive test suite. Your code will be graded on
a different set of tests from the ones given below, so you can’t count on these tests finding all
possible mistakes. You should test your program on your own combinations of inputs, making
sure that you have tried out all possible paths that your code might take. In other words, make
sure you try out numbers that test every possible scenario your program could encounter.

Shiitakes
Found / Will-
ing to Trade

Portobellos
Found / Will-
ing to Trade

Chef Offers Accept? Player’s Final Shi-
itake/Portobello/Rubies

10/5 30/22 66 rubies Yes 5/8/66

100/0 40/5 15 rubies Yes 100/35/15

10/10 5/6 Chef runs away NA NA

10/10 6/5 50 rubies No 10/6/0

20/0 0/0 Unwilling to trade NA NA

13/12 9/8 8 rubies Yes 1/1/8

5



Submission

Check over the rubric to make sure you aren’t missing anything. Submit the following Python
files with your solutions to each of the programming problems. Be sure the names of the files
uploaded to Canvas match these exactly (if you resubmit, canvas will append a number—this
is fine): cardme.py, quadratic.py, and fungi exchange.py.

Fill out the A2 Hours quiz on Canvas with an estimate of the number of hours you spent
working on all parts of this assignment.

6



Rubric

cardme.py (10 points)
Author, date, and program description given in a comment at the top of the file 1 point

Code is commented adequately and variables are appropriately named 1 points

Prompts for the correct values 2 points

Correct output for years < 1998 2 points

Correct output for years > 1998 2 points

Correct output when year == 1998 2 points

quadratic.py (15 points)
Author, date, and program description given in a comment at the top of the file 1 point

Code is commented adequately and variables are appropriately named 2 points

Correct output for a = 0 3 points

Correct output when discriminant is negative 3 points

Correct output when the quadratic has two distinct real roots 4 points

Correct output when the quadratic has only one real roots 2 points

fungi exchange.py (25 points)
Author, date, and program description given in a comment at the top of the file 1 point

The code is commented adequately and variable names are appropriately named 2 points

The program uses no more than 10 if and elif keywords 5 points

The program correctly prompts for the mushroom input 2 points

The ruby and remaining mushroom counts are correct after making a trade 6 points

The remaining mushroom counts are correct when the trade is not made 3 points

The program responds correctly if the player specifies they want to trade 0 3 points

The program responds correctly if the player wants to trade more mushrooms
than have been picked up

3 points

Total 50 points

7



Challenge Problem: Mean and Median of Three Values

Some assignments will come with an optional challenge problem. In general, these problems
will be worth very small amounts of extra credit: this one is worth two points. Though the
grade payoff is small, you may find them interesting to work on and test your skills in Python
and algorithm development. The skills and knowledge needed to solve these problems are not
intended to go beyond those needed for the base assignment, but less guidance is provided and
more decisions are left up to you. The A1 challenge problem is as follows:

Write a program called threestats.py that takes three numbers as command line arguments
and prints the mean and median of the values as floats. The median should be printed first,
followed by the mean on a second line, as shown in the sample output in Figure 4.

Note that this program gets its input via command line arguments, not the input function.
If you need a refresher on command line arguments, review the Lab 2 handout. In the figure,
the arguments appear on the console, but I specified them by typing them into the “Program
arguments” text box at the top of the Thonny window.

Figure 4: Sample output for threestats.py. Note that 4 4 10 are command line arguments
specified in the Program arguments box in Thonny.

As usual, you do not need to handle improper user input: assume that the command line
arguments can be correctly converted to floats.

To get the extra credit, your program must follow some extra guidelines:

• You may not use any Python functions other than those we’ve covered in class, namely
type conversion functions, and print (you shouldn’t need input).

• You may not use loops, lists, or any other constructs we haven’t covered; this problem
can be solved using boolean expressions, conditional statements, and print function calls.

• There are multiple ways to go about this, and all the ones I know of look quite cryptic when
written in code; be sure to include comments to help a reader of your code understand
your approach.

• For full credit, make sure your code works when two or more of the numbers are equal.

Testing is left entirely up to you.

3.1 Rubric

• No credit if the program does not follow the above guidelines

• 1 point for correct output on three distinct inputs

• 1 point for correct output on inputs where two or more values are equal

8


	Drinking Age Check
	A Quadratic Formula Solver
	A fun game involving Fungi
	Rubric


