
CSCI 141
Fall 2019

Assignment 1
Topics: Variables, print, input, operators

Introduction

For this first assignment, you will write three small Python programs. The following general
guidelines and tips apply to all three programs.

Getting Started

Refer to lab 1, as well as the lecture slides, to review what you’ve learned so far. In this and
future assignments, you may not have seen all the topics in lecture before the assignment is
released, but they will be covered well before the deadline. As usual, seek help early if you get
stuck: come talk to me or the TAs during office hours, or visit the CS mentors for help. Please
keep track of approximately how much time you spend on both portions of this assignment.
You will be asked to report your estimate on Canvas after you submit.

Collaboration and Academic Honesty

The programs you write solution MUST be authored solely by you. You can discuss the
problems with your peers, but these discussions should happen away from computers and you
should take a break before returning to write code to help ensure that you truly understand the
answers. You may not copy another person’s code, or have another person tell you what code
to type. If you have any questions, or are unsure about whether a specific sort of collaboration
violates academic honesty, please come talk to me.

Coding Style

All your programs must have a comment at the top stating the author, date, and a short
description of your program. You should also include comments elsewhere in your code anytime
you think your code is doing something non-obvious and a reader of your code would benefit
from some explanation.

Your code should be written as clearly as possible (i.e., try to avoid the need for explanatory
comments). Variable names should follow the guidelines discussed in lecture for sensible naming:
neither too verbose nor too terse.

Valid Input and Error Checking

You may assume that the user is well-behaved and enters data as prompted. Your program is
not required to check the user’s input to make sure it’s well-formed. Your program is allowed
to throw an error if the input is bad (i.e., the user enters a string instead of a number).

Testing

Testing is a major component in the process of writing software. Often, testing (detecting
errors) and debugging (locating and fixing errors) takes way more effort than writing the code
did in the first place. We’ll talk more about testing as the quarter progresses; in the meantime,
for each problem below we provide a table with some helpful test cases that you can use to see
if your program is working correctly. Try your code out with the given inputs and make sure
your output matches the program output specified in the table.

1 Arithmetic Homework Helper

Congratulations! You’ve just been hired as a Python programmer at an education start-up
company. Your first task is to develop a prototype of a program that kindergarten students will
use to check their homework assignments which involve addition, multiplication, and division
problems. The program begins with a series of prompts, then prints a few lines to the screen
in response. In total there are 6 lines that are printed each time the program is run:

1. Prompt the user for their name

2. Greet the user and ask them to supply the first positive integer

3. Prompt the user for a second positive integer

4. Output the sum of the two numbers

5. Output the product of the two numbers

6. Rephrase the division question, and output the whole number and remainder. All nu-
merical outputs on the 6th line of output must be integers (whole numbers, without
decimals).

A sample invocation of the program is shown in Figure 1:

Figure 1: Sample Output

Although this is a simple set of steps, there are many, many different Python programs that can
achieve it. The text of your prompts does not need to match the example exactly. However,
your solution must follow the the instructions above exactly as specified. For example:

• Both the greeting and the prompt for the first number must be printed on the second line
of output.

• The last (6th) line of output must rephrase the division question and output the whole
number and remainder portions of the calculation on a single line.

Test Cases

First Integer Second Integer Sum Product Division

7 5 12 35 1 remainder 2

5 7 12 35 0 remainder 5

3 3 6 9 1 remainder 0

1 678 679 678 0 remainder 1

8364724 9738 8374462 81455682312 858 remainder 9520

2 Mortgage Calculator

Many online real estate websites have mortgage calculator features1. These calculators ask for
some information, such as the price of a home, the down payment (amount of the home price
you’d pay up front), and the interest rate, then calculate the amount you’d have to pay monthly
on a loan for the home.

According to NerdWallet2, the formula used to calculate the monthly payment based on these
inputs is as follows:

M = (P −D)
r(1 + r)N

(1 + r)N − 1

Where:

M = The monthly payment

P = The price of the home

D = The down payment amount

N = The number of months over which the loan will be paid off

r = R ∗ .01/12, the monthly interest rate, which is the yearly percentage converted to a decimal and divided by 12

Write a program called mortgage.py that prompts the user to enter (one at a time, and in
exactly the given order order) values for P,D,N, and R, and outputs the monthly payment
amount M . Notice that you are asked to prompt the user for R, the annual interest rate as a
percentage (e.g., 3.7), but the formula uses r, the monthly interest rate.

A sample invocation of the program is shown in Figure 2.

1See https://www.zillow.com/mortgage-calculator/ for an example
2Go to https://www.nerdwallet.com/mortgages/mortgage-calculator/calculate-mortgage-payment and click

“How to calculate your mortgage payment” for the source of the formula

Figure 2: Sample Output

Test Cases

For brevity, the output is truncated after 3 decimal places in the table below; your program
will output more decimal places (as in the example invocation).

P D N R Output (M)

100000 20000 360 3.7 368.226

1000000 10 180 3.4 7099.747

549050 103200 800 5.1 1960.773

3 Making Change

You are tasked with writing a software component for a self-checkout machine to be deployed
in grocery stores. In particular, you will write a program that calculates how to give change to
customers who paid with cash.

The program should begin by prompting the user to input the dollar amount of change the
machine needs to dispense. Then, your program should calculate the most efficient way to give
change and print the amount of each denomination required. The highest-value currency the
machine stocks is $20 bills, and it has all the standard bills and coins all the way down to
pennies.

If you’ve ever worked in retail, you know that the algorithm for giving change with the smallest
number of bills and coins is quite simple: starting with the highest-valued bill or coin, use the
largest denomination that’s less than the remaining amount left. For example, to give change
for $.60, I’d notice that a quarter ($.25) is the highest-valued denomination less than $.60, and
I can use two of before going over $.60. I now have $.10 left, and I’d repeat this process until
the total remaining is zero.

The number of each denomination should be printed as an integer (no decimals).

An example invocation of my solution program is shown in Figure 3.

Figure 3: Sample Output

Test Cases

Input $20s $10s $5s $1s Quarters Dimes Nickels Pennies

13.99 0 1 0 3 3 2 0 4

209.14 10 0 1 4 0 1 0 4

36.41 1 1 1 1 1 1 1 1

0.32 0 0 0 0 1 0 1 2

Submission

Double check that your programs work according to the specification and produce the output
given in the test cases. Take a look through the rubric below and make sure you won’t lose
points for reasons that could easily be foreseen and fixed. When you’re finished, submit each of
your programs as a .py file named arithmetic.py, mortgage.py, and change.py, respectively.
Finally, fill out the A1 Hours quiz with an estimate of the number of hours you spent on A1.

Rubric

arithmetic.py (15 points)
Author, date, and program description given in a comment at the top of the file 1 point

Code is commented adequately and variables are appropriately named 1 points

Program prompts for user’s name on the first line 3 points

Greeting on second line includes user’s name 3 points

First integer prompt also appears on second line 2 points

Correct sum output on fourth line 1 points

Correct product output on fifth line 1 points

Division question is rephrased, quotient and remainder are printed on sixth line 3 points

mortgage.py (15 points)
Author, date, and program description given in a comment at the top of the file 1 point

Code is commented adequately and variables are appropriately named 1 points

Prompts for the correct values 4 points

Prompts for the values in the correct order 4 points

Produces the correct output 5 points

change.py (15 points)
Author, date, and program description given in a comment at the top of the file 1 point

Code is commented adequately and variables are appropriately named 1 points

Prompts the user for an amount of money 3 points

Calculates a correct way to give change 4 points

Calculates the most efficient way to give change 4 points

Outputs the number of each denomination as an integer 2 points

Total 45 points

	Arithmetic Homework Helper
	Mortgage Calculator
	Making Change

