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Abstract

Key aspects of international policy, such as those per-
taining to migration and trade, manifest in the physical
world at international political borders; for this reason,
borders are of interest to political science studying the im-
pacts and implications of these policies. While some prior
efforts have worked to characterize features of borders us-
ing trained human coders and crowdsourcing, these are lim-
ited in scale by the need for manual annotations. In this
paper, we present a new task, dataset, and baseline ap-
proaches for estimating the legibility of international polit-
ical borders automatically and on a global scale. Our con-
tributions are to (1) define the border legibility estimation
task; (2) collect a dataset of overhead (aerial) imagery for
the entire world’s international borders, (3) propose several
classical and deep-learning-based approaches to establish
a baseline for the task, and (4) evaluate our algorithms
against a validation dataset of crowdsourced legibility com-
parisons. Our results on this challenging task confirm that
while low-level features can often explain border legibility,
mid- and high-level features are also important. Finally, we
show preliminary results of a global analysis of legibility,
confirming some of the political and geographic influences
of legibility.

1. Introduction

Recently in political science, Simmons and Kenwick
proposed the concept of border orientation, defined as “the
extent to which the state is committed to the public, author-
itative, and spatial display of control over territorial entry
and exit at its national borders” [28]. Border orientation,
which ranges from permissive to controlling, is not directly
observable. However, initial efforts using extensive man-
ual coding of border control structures demonstrated that in-
direct measurements can yield interesting political insights
[28, 19].

(a) (b) (c)

Figure 1: Examples of the variety in border legibility in
our dataset with columns (a) highly legible, (b) moderately
legible, and (c) not legible. The location of the border is
drawn in yellow.

Prior work relies on manual coding of a few indica-
tors including built structures at border crossings, a rela-
tively small number of well-documented border walls, and
population-weighted density of police stations. In this pa-
per, we propose a new computer vision task with the high-
level goal of providing a more general and scalable indicator
of border orientation. Casting the measurement of border
orientation—a policy-level concept—as a visual task, we
propose to estimate the legibility of international political
borders; legibility is defined as the extent to which a border
can be visually detected. Our intuition is that the visible
manifestation of border-related infrastructure should pro-
vide a good proxy for the extent to which a state has invested



in the spatial display of territorial control over its borders.
While legibility could be assessed from a ground-level per-
spective, ground-level imagery at borders is not universally
available; instead, we focus on estimating border legibility
in overhead imagery. The ability to estimate a state’s under-
lying strength near its frontier by a visual characterization of
the environment would enable exciting research directions
in political science; measuring legibility on a global scale
would enable research on topics central to political science
and international relations, such as state consolidation, bor-
der conflicts, and human development.

Meanwhile, the border legibility estimation problem also
presents an interesting computer vision challenge. Read-
ily available overhead imagery and well-documented po-
litical border locations mean that image data with ground-
truth border locations is plentiful, opening the door to self-
supervised approaches. However, we find that these ap-
proaches require careful consideration because legibility is
very low in a large fraction of many of the world’s borders
(e.g., relatively featureless forests, deserts, or agricultural
land in remote areas, such as the tiles in Figure 1(c)) are
highly illegible. Furthermore, we find that though ground
truth border locations are easily obtained, legibility itself
is a subjective concept and requires human judgements to
supply ground truth.

Another interesting technical feature of the legibility es-
timation problem is that the relevant visual features range
widely from low-level to high-level. For example, in Fig-
ure 1(a) middle, the border is legible due to low-level
edge features due to the river. In other locations, legibil-
ity might be due to mid-level features like textural contrast
caused by differences in land use, vegetation, or building
style. Finally, high-level semantic reasoning may be re-
quired around border crossings where traffic control pat-
terns or buildings suggest the presence of the border.

In this work, we define the border legibility estimation
task, collect a global dataset of overhead image tiles cov-
ering the world’s international land borders, and develop a
suite of methods for the border legibility estimation task.
In line with our intuition about the variety of visual fea-
tures relevant to the task, our methods range from classical
pixel-based image statistics to a self-supervised deep net-
work trained using contrastive learning. To validate our
methods, we used crowdsourcing (i.e., Amazon Mechani-
cal Turk) to collect a dataset of pairwise human legibility
comparisons, and benchmark our baselines on various met-
rics, considering both raw pairwise comparison agreement
as well as metrics comparing to a ranking built from pair-
wise human judgements.

2. Related Work
Overhead imagery. Many large scale overhead image

datasets have been proposed in recent years taking advan-

tage of the increasing availability of such imagery from
around the world [31, 34, 33, 40, 23, 15, 22, 38, 7, 27, 30,
39, 2]. These datasets have helped further progress in key
areas such as satellite image classification [18, 26]. They
have also helped pioneer the benchmarking of novel tasks
such as canopy height estimation [21], parking lot detec-
tion [35], and parcel segmentation [1]. Similar to these
works, we benchmark a novel overhead image task mak-
ing use of a newly collected dataset. We are also inspired
by previous works for the use of classical Computer Vi-
sion methods, such as K-means clustering, as a baseline for
satellite image tasks [16, 18].

Self-Supervised training. Unlike many other satellite
image task frameworks, we do not have sufficient ground
truth data to directly learn the legibility task from our
ground truth. Therefore, we look toward self-supervised
methodologies capable of learning useful data properties
with imperfect or missing labels. In particular, we draw
inspiration from two approaches to self-supervised learning
that have recently demonstrated impressive results: Con-
trastive Siamese networks [37, 5, 6, 17, 11] and Cut-and-
Mix based training augmentation [36, 25, 24]. In our
work, we propose a novel combination of both approaches
to learn a model that performs pairwise the border legibil-
ity judgements. As in SimCLR [5], we are interested in
representation learning based on two differing views of the
same image; however rather than enforcing similarity be-
tween the representations, we introduce legibility-specific
CutMix [36]-style augmentations that stand in for ground
truth pairwise legibility comparisons.

Pairwise Evaluation. Our contrastive learning model,
validation dataset, and evaluation metrics all rely on pair-
wise legibility judgements rather than prediction of an ab-
solute legibility “score”. Previous work in both computer
vision [3] and political science [4] has demonstrated the
usefulness of pairwise comparisons for quantities where ab-
solute scales are inappropriate due to subjectivity (e.g., sen-
timent) or humans’ inability to make absolute judgements
(e.g., surface albedo). Given sufficient pairwise compar-
isons among a set of example tiles, a total order can be
generated using various methods such as Elo [29]. In our
work, we leverage the framework developed by Carlson
and Montgomery [4], which uses a random utility model
to jointly estimate a score for each example and a worker
reliability score for each human annotator.

3. Border Legibility
We define border legibility as the extent to which the

border is visible to the naked eye. Figure 1 gives exam-
ples of aerial imagery depicting highly legible (a), mod-
erately legible (b), and illegible (c) borders, with the true
border location overlaid in yellow. Borders can be legible
for a variety of reasons, some of which relate to direct hu-



man influence on the landscape, while others relate to geo-
graphic features. Human-influenced features might include
differences in land use on each side of the border; markers,
roads, fences, walls, or other structures running along or
parallel to the border; and differences in the built environ-
ment. Meanwhile, highly legible geographic features like
rivers and mountain ridges often coincide with borders.

In large part, we leave the precise interpretation of “leg-
ibility” up to human visual judgement with one key excep-
tion related to human influence. Motivated by our eventual
goal of measuring causes and consequences of legibility,
we let human-influenced features be a tie breaker in com-
parisons where visual legibility is otherwise equal. For ex-
ample, if one border has a road along it and another fol-
lows an equally visually distinctive river, the border with
the road should be considered more legible since the visible
evidence for the border is human-made. Further details on
annotation data collection are provided in section 5 and the
supplemental material.

3.1. Defining the Legibility Estimation Task

The legibility estimation task can be posed in absolute
or relative terms. An absolute prediction problem requires a
model to output some kind of legibility score given a single
tile. While such scores could be normalized to fit on some
numerical scale (e.g., 0 to 1), legibility does not naturally
follow any specific scale, so even for such models we do not
impose this constraint in model development or evaluation.

Because scores may be on an arbitrary scale and human
judgements on a absolute scale are likely to be unreliable,
we can also develop models that make relative legibility
judgments: given a pair of images, a model may decide
which is more legible. Using the same pairwise ranking
technique as we use for our ground truth human annota-
tions [4] (see section 2), we can use pairwise judgements
over a set of inputs to generate a total order over the whole
set. While most of our more classical baseline methods out-
put absolute scores given a single tile, our strongest method
is based on a siamese architecture that performs pairwise
judgements.

The second important determination in posing the legi-
bility problem is what border information the task is condi-
tioned on. Since the border legibility of a non-border image
tile is not readily defined, our task is conditioned on the
presence of a border: given an image with a border, how
legible is that border? However, a human annotator or a
vision model may also be provided with the image-space
location of the border. In our early experiments judging leg-
ibility with and without the border location, we found that
both had drawbacks. Knowing the border location opens
the door for confirmation bias, but not knowing the border
location allows for non-border features to be mistaken for
evidence of legibility (e.g., the boundary of an agricultural

field that does not follow the border). In informal annota-
tion experiments, we found that the latter effect was much
more common, and chose to pose the task as conditioned on
the location of the border.

In summary, we work with two definitions of the border
legibility estimation task:

1. Absolute task: Given an image containing a border and
the location of the border, output a single real number
legibility score, with higher being more legible.

2. Relative task: Given two images containing borders
and the location of each border, determine which of
the images has the more legible border.

The pairwise ranking framework [4] allows methods
solving the relative task to generate results on the absolute
task for a given set of images.

4. Legibility Estimation Methods
While machine learning is well-suited for data-driven

approaches to understanding high-level concepts like bor-
der legibility, training a model to directly predict legibil-
ity was not feasible because a large-scale dataset of legi-
bility labels was too expensive to collect. Specifically, our
1000-image validation set cost around $500 to collect, while
the whole world has over 600,000 tiles. Self-supervised
approaches seem promising, but require careful design to
work well with the particulars of the border legibility task.
This section begins by presenting some relatively simple
statistical baselines that leverage raw pixel values or fea-
tures from pretrained deep neural networks. We then de-
scribe a pairwise self-supervised siamese model trained us-
ing contrastive learning that outperforms the classical base-
lines on some metrics.

4.1. “Classical” Baselines

To establish reasonable baselines that do not rely on
custom-trained neural networks, we tried a number of varia-
tions on a general feature analysis framework that compares
collections of per-pixel features from different regions of
the image. Our guiding intuition is that in a suitable feature
space, the differences among pixel-wise features in different
locations with respect to the border should correlate with the
legibility of the border. Consider as a simple example the
tile in Figure 2a, where the distribution of RGB pixel colors
clearly differs from one side of the border to the other due to
differences in land use. Mid- and high-level features might
also differ, with similar colors but different textures due to
vegetation or the built environment.

Another key intuition is that there are two general rea-
sons that borders may be legible. The two sides of the bor-
der may be distinguishable as in Figure 2a; in this case it
makes sense to compare features on opposite sides of the



(a) (b)

Figure 2: Examples of images with discrepancies in border
segments primarily due to (a) features on either side of the
border and (b) features along the border.

border. However, Figure 2b shows an example of a bor-
der that is legible only because of a feature running along
the border. For this reason, we consider not only two sides
of the border, but three segments including a buffered area
along the border. An example of the three segments under
consideration is shown for another example tile in Figure 3.

(a) (b)

(c) (d)

Figure 3: (a) An input image I with the border drawn in
yellow. Three collections of features are created by mask-
ing the pixels (b) on one side of the border, (c) in a margin
around the border, and (d) on the other side.

Our general approach for baselines is to extract a collec-
tion of features from each of these three segments of the
border, then use some measure to compare the similarity
of the feature collections. Formally, let I be an input tile,
ϕ be a feature extractor, and define three masks that select
the pixels on one side (MA), a margin surrounding and in-
cluding the border (MB), and the other side (MC) as shown

in Figure 3. We compute corresponding feature collections
FA, FB , FC as:

FA = ϕ(I)[MA]

FB = ϕ(I)[MB ]

FC = ϕ(I)[MC ]

(1)

where the Numpy-like [12] notation A[M ] extracts the
masked locations of A specified by a binary mask M . This
results in an n× d feature matrix, where n is the number of
ones in M and d is the number of channels in A.

We experimented with three different feature extractors
(ϕ). Considering color only, ϕP simply treats the RGB
pixel values as feature vectors. ϕR(L) takes the output fea-
tures from layer L of a pretrained convolutional neural net-
work model; we used ResNext-101 [32], taking the output
of the conv1 layer as ϕR(1) and similarly for conv2 and
conv3. Finally, ϕT extracts the per-patch features pro-
duced by the encoder of a large Transformer model (we
used Masked AutoEncoder [13]). We denote the corre-
sponding feature collections FP , FR(L), and FT , respec-
tively.

Given these three collections of features, we use some
dissimilarity measure D(·, ·) to compare them, usually in
a pairwise or one-vs-all manner, taking the maximum of
individual dissimilarities as the legibility score prediction.
Using the maximum dissimilarity enables identification of
legibility due to difference in sides (Figure 2a) or due to
features along the border (Figure 2b).

We experimented with a variety of dissimilarity mea-
sures; we present two of the most successful ones here, and
include a few others in the supplemental material. A dis-
similarity measure D compares two collections of features;
while the feature dimensionality is the same, the number
of features may differ based on the number of pixels in the
corresponding segment’s mask.

Average Pairwise Feature Distance. Our simplest mea-
sure of dissimilarity among feature collections is a simple
average distance among pairs of individual features. We
experimented with L2 distance and found that, somewhat
surprisingly, the cosine distance d(f1, f2) = f1

||f1|| ·
f2

||f2||
worked best even for RGB pixels.

Formally, we define the dissimilarity between two fea-
ture collections as the average distance between a pair of
features, with one chosen from each collection:

D(F1, F2) =
1

|F1||F2|
∑

f1∈F1,f2∈F2

d(f1, f2). (2)

The legibility score is then calculated as the maximum dis-
similarity among each segment and the other two:

LCos = max(D(FA, FBC), D(FB , FAC), D(FC , FAB))
(3)



where FAC represents the concatenation of FA and FC .

Cluster Assignment Distributions. We use K-means clus-
tering to cluster the whole tile’s features into k (we set
k = 3) clusters. Given the cluster assignment of each fea-
ture in the tile, we calculate a normalized discrete distribu-
tion of cluster assignments pABC for the whole tile, and for
only the features in each tile pA, pB , pC . Legibility is then
measured as the maximum disagreement between the dis-
tribution of cluster assignments for each segment and the
overall full-tile distribution:

LCluster = max
S∈A,B,C

DKL(pS ||pABC) (4)

where DKL denotes Kullback–Leibler divergence.

4.2. Pairwise Legibility Prediction using a Self-
Supervised Siamese Network

While ground truth legibility labels are not readily avail-
able, image tiles containing known borders are plentiful.
With this in mind, we sought to train a legibility estima-
tion model using self-supervised learning. We designed a
contrastive Siamese network, BorderCut, to make relative
legibility predictions, i.e., to predict which of two images
has a more legible border.

Contrastive Training Approach Inspired by recent suc-
cess in contrastive learning methods (e.g., [5]), we devised
an augmentation scheme that produces pairs of synthetic
training examples where the ground truth label (i.e., the
more legible of the pair) is known. Our key idea is that,
while we cannot know how legible a single tile is, in most
cases we can augment it to become more legible with high
probability. We accomplish this using a CutMix-style aug-
mentation, replacing one or more segments with pixels from
a random other image.

Let x represent an unedited border image tile and select
two other random tiles z1, z2. We then construct a syn-
thetic training pair (x′

1, x
′
2) using one of three augmentation

strategies:

1. x′
1 is set to x, while one side of the border (MA or MC)

from x2 is randomly chosen to be replaced with pixels
from z1, e.g., x′

2[MA] = z1[MA]. An example is given
in Figure 4(a).

2. x′
1 is set to x, while the border (MB) in x′

2 is replaced
with pixels from z1, as shown in Figure 4(b).

3. x′
1 has one side of the border replaced (MA or MC),

while x′
2 has the same replacement but also has the

border replaced with images from a different image
z2. In other words, x′

1[MA] = z1[MA] and x′
2[MA] =

z1[MA] and x′
2[MB ] = z2[MB ], as shown in FP

B Fig-
ure 4(c).

(a) (c)(b)

Figure 4: Examples of augmented training pairs where the
bottom image represents x′

1 and the top represents x′
2.

By mixing border segments from randomly sampled im-
ages, we take advantage of the natural diversity of features
from the world’s borders: barring highly unlikely coinci-
dences, these mixed features introduce border segments in
x′
2 that are artificially distinct and do not exist in x, regard-

less of its initial legibility. While we can’t know the ab-
solute legibility of a mixed tile, most augmented tiles will
be more legible than their non-mixed counterpart, so the
ground truth “more legible” tile is set to be x′

2. Finally, we
randomly swap x′

1 and x′
2 at training time to ensure our up-

dated ground truth label y is not always the same.

Network Architecture. The BorderCut model takes two
images x0 and x1 and makes a binary prediction, outputting
a two-class softmax probability vector ŷ using a siamese ar-
chitecture as shown in Figure 5. We consider BorderCut as
a composition of two separate functions: a shared backbone
feature extractor ϕ(·), and a combined classification head
φ(·). The network can be described by:

ŷ(x0, x1) = φ (ϕ(x0)⊕ ϕ(x1)) (5)

where ⊕ denotes concatenation.
For ϕ(·) we use the fully convolutional backbone of

Resnet18 [14], while φ(·) is a 2-layer MLP with ReLU ac-
tivations [9]. After two inputs are passed to ϕ(·), both re-
turned feature representations are flattened to 512 dimen-
sional vectors and concatenated to create a 1024 dimen-
sional input to φ(·). The classification head (φ) uses one
linear layer to transform the input to a 512 dimensional vec-
tor and a second layer to reduce the representation into a 2
dimensional classification result, which is then softmaxed
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Figure 5: The BorderCut architecture. ResNet denotes ϕ from Equation 5, while everything after concatentation represents
φ.

to get corresponding probabilities (i.e., higher corresponds
to the more legible sample).

Training Details We train BorderCut on 40,000 ran-
domly sampled images from our dataset and run validation
on an additional 10,000 images. The model is trained using
cross-entropy loss for 100 epochs with a batch size of 8 and
a fixed learning rate of 1e−5. In section 6, we report the
best validation performance achieved throughout training.

At test time, as shown in Table 2, our model generalizes
from our training task to the border legibility task without
any supervised labels.

5. Evaluation
This section discusses the data, metrics, and experiments

we used to evaluate our legibility estimation methods. We
collected a global dataset of aerial imagery and a crowd-
sourced validation set of pairwise legibility judgements. We
evaluate our methods using raw accuracy on pairwise com-
parisons and two metrics comparing rankings of the 1000-
tile validation set.

5.1. Data Collection

Using the International-Borders-2 dataset from Sim-
mons and Kenwick [28] as the source of truth for the loca-
tion of political borders, we collected aerial image tiles from
the Bing Maps Imagery API1 at densely sampled locations
along all international land borders. The dataset contains a
total of 612,374 aerial image tiles. Each tile has 256× 256
pixels and covers a land area of 400 × 400 meters. We use
Shapely [10] to derive image-space coordinates of the bor-
der linestring. Due to API terms of use, we are not able to
release the full dataset, but it can be reproduced using the

1https://docs.microsoft.com/en-us/bingmaps/
rest-services/imagery/

code and tile query locations, which are available on our
project webapge2.

To evaluate our methods against a “ground truth” notion
of border legibility, we collected a validation set of legi-
bility annotations on a set of 1000 random tiles from the
global dataset. We used Amazon Mechanical Turk to col-
lect about 12,000 pairwise judgements by asking annotators
to decide which of two images has the more legible border.
Annotators were shown both tiles with the border overlaid,
with the ability to toggle the border off to see any features
obscured by the border line. We used the framework from
Carlson and Montgomery [4] to aggregate the pairwise an-
notations into a ranking that also yields worker confidence
scores. The worker confidence scores, as well as manual
inspection, suggest that, while worker reliability was vari-
able, the ground truth data is not corrupted by large num-
bers of objectively incorrect annotations. Further details of
the crowdsourcing data collection process, including the in-
structions given to annotators, are provided in the supple-
mental material.

5.2. Evaluation Metrics

We evaluate our method predictions on raw accuracy
of pairwise comparisons and two ranking metrics: Tau
(Kendall’s Tau Rank Correlation [20]) and Footrule (Spear-
man’s Footrule [8]). For all ranking metrics, we create
absolute image rankings by applying the statistical model
from [4] to both ground truth and predicted pairwise com-
parisons. Applying metrics on the rankings has two bene-
fits: first, the metrics are less influenced by random sam-
pling noise due to which pairs were annotated; and sec-
ondly, the ranking algorithm models the reliability of each
individual annotator, helping to smooth over noise and

2https://fw.cs.wwu.edu/˜wehrwes/
BorderLegibility/



Method
ϕP ϕR(1) ϕR(2) ϕR(3) ϕT

Acc. τ Footrule Acc. τ Footrule Acc. τ Footrule Acc. τ Footrule Acc. τ Footrule

Distance 62.40 0.151 277.91 60.28 0.084 301.38 58.17 0.059 313.26 56.19 0.261 244.82 51.63 -0.027 332.82
Clustering 61.28 0.075 305.33 63.42 0.116 290.92 60.19 0.209 262.53 58.80 0.449 186.68 49.86 0.032 314.49

Table 1: Results of baseline methods (subsection 4.1) on the annotated validation set, for different choices of input features
ϕ. Higher is better for accuracy and τ , while lower is better for Footrule.

achieve greater global consistency by down-weighting con-
tributions by workers whose annotations were less reliable.

Accuracy We compute the discrete number of times a
given method prediction agrees with the annotated truth,
then divide the total agreements by the total number of com-
parisons. In cases where a pair of images has been anno-
tated multiple times, we take the majority vote winner as
the most legible image. In cases where the annotations re-
sult in a tie, a random choice is made.

Kendall’s Tau measures the normalized rate of “inver-
sions” in the ranking. For a given pair of images, an in-
version occurs if the images appear in the opposite order in
the predicted ranking versus the ground truth ranking. For a
set of images, X = {x1, . . . , xN}, a predicted ranking r∗,
and a ground truth ranking r that yield the ordinal position
of an image in the ranking, dτ (·) can be written as:

dk(r, r
∗) = | {(xi, xj) : i ̸= j∧

r(xi) < r(xj) ∧ r∗(xi) > r∗(xj)}|
(6)

dτ (r, r
∗) = 1− 4 · dk(r, r∗)

N · (N − 1)
(7)

Equation 7 normalizes the number of inversions to the range
of a correlation coefficient such that dτ (r, r∗) ∈ [−1, 1],
with 1 representing perfect agreement (0 inversions) be-
tween the two rankings.

Spearman’s Footrule is a slightly more interpretable
metric that measures the total displacement: the sum of all
absolute differences in rank positions between r, and r∗.
To aid with interpretability, we divide by N to give the av-
erage displacement; in other words, this metric measures,
on average, how far an image’s predicted rank is from its
ground truth ranking position. Formally, with X , r, and r∗

as defined in Equation 6, we define dF (·):

dF (r, r
∗) =

1

N

N∑
i=1

|r(xi)− r∗(xi)| (8)

6. Results and Discussion

Baselines We benchmark the performance of our two
baselines - Average Pairwise Feature Distance (Distance)
and Cluster Assignment Distribution (Cluster) using five
different feature extractors for each: pixels (ϕP ), three in-
termediate ResNext-101 [32] convolutional feature layers
(ϕR(1), ϕR(2), and ϕR(3)), and features from the encoder
output of a Masked Autoencoder [13] (ϕT ).

The results of our baseline methods are given in Table 1.
Although the best score for each metric was achieved by the
Cluster method, the best method depends on the choice of
input features. Shallower CNN features win on raw pair-
wise accuracy, while the conv3 features are the clear win-
ner on the ranking metrics. However, it is worth noting that
even the simplest baseline, using average pairwise distance
among RGB features ϕP achieves an accuracy only about
1% below the best performer on that metric. This is consis-
tent with our observation that borders are often legible due
to low-level visual features such as color differences.

The conventional wisdom that “deeper is better” is sup-
ported by our experiments using the Cluster baseline with
CNN features, although the even deeper Transformer fea-
tures perform significantly worse. For example, the τ per-
formance of the Cluster baseline increases monotonically
from 0.075 to 0.449 as the input features vary from raw pix-
els ϕP to conv3 ResNext features ϕR(3). The Transformer
features perform worse; we hypothesize that this is due to a
lack of interpretable spatial reasoning in the encoded space
for Cluster, and the fact that images must be processed in
large chunks for Distance.

BorderCut Table 2 shows the performance of our self-
supervised BorderCut model. Although the model is not
trained on any ground truth labels, it achieves better raw
accuracy than any of our baseline methods, while its per-
formance on the ranking metrics remains worse than the
best clustering baselines. This close competition between
pretrained features (not even trained on overhead imagery)
and a custom-trained self-supervised approach highlights
the challenge of working without ground truth labels, and
suggests that there remains potential for better performance,
e.g., through additional experimentation with augmentation
methods.



Method Accuracy↑ τ ↑ Footrule↓
BorderCut 65.85 ± 1.6 0.145 ± 0.02 283.18 ± 8.8
ϕR(3) 58.80 0.449 186.68

Table 2: Comparison of BorderCut with the best performing
“classical” method (i.e., ϕR(3)).

Discussion Overall, the performance metrics of all our
methods on this task appear low: the best accuracy is around
63% (50% is random chance); the best τ correlation is be-
low 0.5, and the best average displacement is around 187.
While this does suggest that there is room for significant
improvment over our baselines and BorderCut methods, we
believe that due to ambiguity and human disagreement, per-
fect accuracy is not reasonable to expect or necessary for
our applications. For example, in our judgement, at least
the bottom 10% of tiles in the 1000-image validation set
ground truth ranking appear equally illegible. Future work
could investigate the extent of this ambiguity by looking at
levels of human agreement in the annotations to quantify an
upper bound on these metrics.

Supervised Machine Learning with Proxy Tasks For
our purposes, direct supervised learning is prohibitively ex-
pensive as discussed in section 4. We attempted to train
models to predict the position or angle of the border, then
use their accuracy as a proxy for legibility. However, we
found that such models were difficult to train because too
many training examples have illegible borders, making the
signal-to-noise ratio quite low. We also considered compar-
ing border images to images from non-border locations, but
this remains problematic because non-border tiles may still
contain features that would be evidence for legibility if they
were along a border (e.g., a river that does not coincide with
a border).

Global Results As a preliminary experiment towards us-
ing our methods to understand global legibility trends, we
ran the Distance method with ϕP features on the entire
global Overhead-Borders dataset. Table 3 shows the top 10
most legible borders, computed by averaging per-tile legi-
bility along each border. We find the most legible country
borders with this method tend to be relatively short with dis-
tinctive, usually natural, features. For instance, short moun-
tain borders such as France-Andorra and Russia-Georgia
or river borders (e.g., Suriname-France, Zimbabwe-South
Africa, Tanzania-Mozambique, Liechtenstein-Switzerland)
are prominently featured. However, we also observe the
effect of policy and human influence in North Macedonia-
Greece, where a border fence began construction in 2015,
and Zimbabwe-Botswana, where Hunter’s Road covers

Rank Border Score

1 French Guiana–Suriname 0.535
2 North Macedonia-Greece 0.500
3 France-Andorra 0.397
4 Zimbabwe-South Africa 0.389
5 Liechtenstein-Switzerland 0.381
6 Armenia-Iran 0.354
7 Tanzania-Mozambique 0.328
8 Hungary-Yugoslavia 0.322
9 Zimbabwe-Botswana 0.307
10 Russia-Georgia 0.298

Table 3: Top 10 most legible borders according to Average
Feature Cosine Distance with ϕP on the global Overhead-
Borders data set. Border-level legibility is computed by av-
eraging scores for all tiles in a border.

much of the length of the border.

Limitations Our border legibility estimates show
promise, but remain limited. In particular, our methods
all rely, directly or indirectly, on the comparison among
the three segments A, B, and C. Future work is needed
to devise more general approaches that can learn these
distinctions alongside even higher-level reasoning, such
as the ability to identify border control structures. Our
methods are also evaluated only on aerial imagery at a
single resolution and with a fixed amount of spatial context;
due to the imperfect aerial data source, in rare cases images
are blurry, or the ground is obscured by clouds. Further
examination of the effect of these parameters might yield
improved performance and interesting insights about the
spatial extent of features that give rise to legibility.

7. Conclusion
This paper introduced the novel computer vision task of

border legibility estimation. We defined the task, collected
a dataset, established baselines and benchmarks, introduced
a self-supervised model for legibility prediction, and eval-
uated our methods against a small crowdsourced validation
dataset of ground truth legibility annotations. While further
research is needed for improved performance, our results
already show promise in elucidating global legibility trends
and their implications on the geography and policies of the
world’s countries.
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