
 Chapter 4 -- Program Semantics

 Syntax -- form of the program (sequence of tokens)
 Semantics -- meaning of the program

 Does the program "make sense", is it "valid"

 Things that can not be defined by a CFG

 call and definition of a function match

 selecting the proper function from overloaded collection

 type checking

 proper declaration (if needed)

 Runtime semantics -- not typically checked by compiler

 Interpreter must implement semantics, compiler translates semantics

 Language design includes semantics

 static semantics -- can be enforced at compile time (semantic analysis)

 dynamic semantics -- runtime meaning

 "dynamic languages" (python, javascript) have less static semantics, postpone checks to runtime

 static semantics -- early checking can lead to better performance

 Abstract Syntax Trees

 Parse tree has a lot of "noise"
 Abstract syntax tree more closely describes the computation

 STMS -> STMTS STMT

 STMT -> ID ASSIGN E | READ RL | WRITE WL | WRITELN | lambda

 RL -> RL , ID | ID

 WL -> WL , E | WL , STR | E | STR

 E -> E + T | E - T

 T -> T * F | T / F | T % F

 F -> ID | CONST | (E)

 Parse tree for a := b + c * d ; write a , " ", b ; writeln

 bdcl lex, yacc, AST program

 Read book:

 abstract grammar : formal definition of AST

 AST and action rules (similar to yacc)

 Recursive Descent action rules

 top down actions

 One-Pass compilers

 Some compilers run each phase until done
 scanner -> parser -> semantic analysis -> optimization -> code generation

 Most do "syntax driven" "One Pass"

 parser in control

 calls scanner

 generates AST, generation of AST does semantic checking

 calls optimizer / code generater with AST

 Dyamic semantics -- semantics at run time

 semantic analysis typically does static semantics

 variables declared, initialized before use

 types matching

 return statment on every path (or runtime error)

 and so forth

 Dynamic semantics are what happens at run time

 Book talks about formalization for describing dynamic semantics

 Don’t have time for a deep dive

 Chapter 5 -- Target Machine Architecture

 Book doesn’t have much on this.

 Very important for a code generator

 We may not make it there so we’ll ignore it for the time.

 If interested, book has a book companion with a 46 page PDF on chapter 5.

