Chapter 3 - Names, Scopes, and Bindings

Early languages ... "high level" vs "low level" assembly
Oabstraction: names instead of memory locations (although assembly had names)

Oeasier constructs for understanding
Oother advantages came later ... e.g. portability
Names -- primary abstraction
OAssembly language primarily had "labels" -- names that represent machine locations
OHigh level languages added abstraction to names
O Names are mostly Identifiersbut '+ can be aname
Omostly names are alpha-numeric, mostly first character alpha
Obinding -- when and to what a name refers
areferencing environment -- complete set of bindings
Binding time
Obinding -- an association between the name and what it names
O binding time -- when this association is created
O Language design time
O Language implementation time
OCoding time
O Compiletime
aLink time
OLoad time
ORun time

Binding time (page 2)

O Earlier binding time -- more efficiency
OLater binding times -- more flexibility

O static vs dynamic -- before run time vs at run time
O But "static" may not seem to be static, e.g auto variables
O Time difference between compiler and interpreter solutions
a0 compile time memory layout
Ointerpreter may evaluate "declaration” multiple times
Olate binding of types can provide polymorphism

onot all storageis bound to a name, C(malloc), Pascal (new) ...

"Object Lifetime" / Storage Management

O names vs objects
O creation and destruction of objects
O creation and destruction of bindings (may not do objects)
O deactivation and reactivation of bindings
Oreferences to variables, subroutines, types,
OObject lifetimes
O Static: "absolute address’, lifetime is program
O Stack: subroutine call allocated, return deallocated, LIFO
O Heap: arbitrary times allocated and deall ocated

Storage Management (page 2)

O Static allocation / bindings

oglobal variables

o function code

O"local" static/own variables

Olarge constants (small ones in instruction stream)

O"invisible" support structures

O Fortran before Fortran 90 -- local variables (no recursion)
O Assembler functions often used static variables

0 Constants and constant values
O "constant” dependent on runtime value

O constant means different things (bc)

O Stack allocation

Orequired for recursion
O each call to a subprogram uses different memory
O allocated on entry, deallocated on exit
Otypical use of stack for subprograms -- "Call frame" or "activation record)
O arguments to subprogram
Oreturn address
0 bookkeeping information
Olocal variables
Olocal temporaries
OMost CPUs have a"Frame Pointer" register (fp)

Storage Management (page 3)

O Stack allocation (page 2)

O subprogram

O preamble -- sets up frame on entry (prologue)

O body -- subprogram code

O postamble -- cleans up the stack (epilogue)
O location on the stack can not be determined at compile time
Oaccessisusualy +/- from the fp

Ouseful for languages without recursion

OHeap alocation
aOrequired for dynamically allocated data
omany different methods to manage a heap
Olssues. speed, fragmentation, re-use, re-use method

O placement: architecture dependent

O garbage collection -- no explicit free, find unreferenced memory and auto free

O automatic vs manual allocation/free
O speed
g error prone

g agorithm complexity

Scope Rules

Scope: textual region where abinding is active
O static vs dynamic (Most languages are static)

OWhat creates scope, closes scope

O subprogram?

o{..}

O specific scope declarations. namespace X { }
O Possible, multiple scope levels -- referencing environment
OBinding rules -- when is scope enforced: deep or shallow

Static Scope (akalexical scope)
Odetermined at compile time by syntax
Osimplest: basic -- one scope, global, no declarations
O Fortran pre 90: al global, subprogram local scope, no declarations, i-n integers
0 named common across compile units,

O Fortran 90 changed rules

Scope Rules (page 2)

Static Scope (continued)
OAlgol 60 allowed recursion

Olocal scope, unique objects per call
O"own" variable -- global but in subprogram scope (C static)
0 Added nested subprograms, with new scope
O many languages now have this
O name resolution rules
O closest nested scope
O inner declaration may hide outer
O ways to select scope, scopename:name, ::X ...
O"built-in" / "predefined” scopes
Oname visibility in scope
o full scope
O declaration to end of scope
omutually recursive functions, records with pointer to self
oforward declarations
O declare before use can have issues with full scope
aOfpc likes scope.p ... but most likely shouldn’t
O many languages do declaration to end of scope
o some (C#) silently uses "local declarations®
Oclassa{ constint N = 10; void foo() { const int M=N; constint N = 20; ... (M is 20)

Scope Rules (page 3)

O Python: no declarations, x = ... in T and in Sinside T, 2 unique X objects
Odeclaration vs definition

oC: struct x; struct x {....};
Oredeclarations -- may cause problems

Access to non-local objects (subprograms)
OAccessto global iseasy ... direct
ONon-local, non-global accessis harder
funca{ intb; funcc{vard; funcf{varg,..b=d+qg;}}}
O Stack based storage, activation record
owhat if f isrecursive?
O static chains

aodisplays (not used that often, book doesn’t mention them here)

Modules -- changing scoping and access rules
O Early programs -- singlefile
OAs programs grew, modularity helped control complexity, separate compilation
O Advantage: speed, don’t have to recompile entire program for a small change
OVarious versions of this appeared: C simple separate compilation
OModules -- way to collect related functionality for separate compilation
0 Added "information hiding"

0 Added new scoping rules

Scope Rules (page 3)

Modules (continued)
OContained a variety of "objects"' -- subroutines, constants, variables ...

OTypically away to control what was visible from "outside" (export)
OA way to get accessto a Module (import)
OAppeared late 70s, early 80s
a0 Clu, Modula, Modula-2, Modula-3, Turing, Ada 83 ...
O Term package replaces module in some current languages
OC++ has "namespace” ... multiple file can defineit, using clause for access
O Separate compilation
Olibraries and parts of a program
O can recompile one without recompiling the other
O0Modula-2 had definition files and implementation files

O0when does a change require recompilation?

Objects
ONext ideafor modularity and re-usability
Onew features: inheritance and dynamic method invocation
0 Someplace in here we got operator overloading as well as method overloading
O some had new visibility rules
Ointroduced ideas of setters and getters

Scope Rules (page 4)

Dynamic Scope

O binding depends on run time

Obinding is most recent binding that is active

O Languages. bc, APL, Snobol, Tcl, TeX, early lisp, perl
O Type checking may need to be done at run time

O Other things may be dynamic too, var2.bc

I mplementing Scope
O Static scope: symbol table
Oenter ID, new_scope, exit_scope
Okey/value DB
O can be saved in executable for runtime lookups in debugger
o0 Compiler Construction class spends |ots of time on this
ODynamic scope: runtime DB for lookups, can be expensive
o Can key/value DB
aomay belist of objects (linear may not be bad here)
O depends on the semantics of the language
Oaliases:
O two or more names that refer to asingle "object”
O can cause issues with optimization
0 C99 added a"restrict" qualifier ... no aliases

O parameters can cause this also

Scope Rules (page 5)

O overloading:
0 same name/feature for two or more objects, often subprograms

O+ works on multiple types
0 need some mechanism of selection, e.g. parameter types
OoAda alows same name in different enumeration types
Otype Month is (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sept, Oct, Nov, Dec)
Otype Baseis (Bin, Oct, Dec, Hex);
O can determine correct on viatype of expressions
O can specify. e.g Month’ (Dec)
0 some languages require type prefix (Modula-3, C#)
O Ada, C++ lots of overloading, subprograms and operators
O Haskel allows "creating" infix operators that call functions
Oleta@@b=a*2+b
O Haskel also alows overloading with types
O overloading vs coercion, polymorphism (covered later)

Binding of referencing environments with subprogram parameters/pointers

Reference to a subprogram
0 Some languages allow "procedure/function parameters’

0O Some languages allow pointers to subprograms
Odeep vs shallow binding of the reference environment (deep-shallow.txt)
O static scoping needs deep binding here
Osubroutine closure: [reference to subprogram, reference to reference environment]
Odynamic bindings: Need the bindings at the time of call
Oe.g. IF bc had function pointers, need current set of names bound
O static bindings: depends on language
O C: has function pointers
o functions are never nested
O environment: local and global
Ocall createslocal, global is global
O no closure needed, just pointer to function
O Languages with nested functions/procedures have issues
0 need the referencing environment at time when procedure is passed

Binding of referencing environments (page 2)

O Example 1, Python: (parameters)
def A(1,P):
def B():
print(l)
if1>1:
PO
else:
A(2, B)
def C():
pass # do nothing
A(1,C)

OWhat is printed? 1 or 2?
aoshalow: 2

Odeep: 1
aWhy?

Binding of referencing environments (page 3)

0 Example 2, Pascal-like (local variables)
var i :integer; (* globa *)
procedure Z (procedure X) { X(2) ... }
procedure P() {
var | . integer;
procedure R(value m:integer) {
If m>=3then { writeln(j * m); X(R); }
writeln(m);
R(m+i);
}

aj:=i* 2
R(1);

}

..1:=10... P();
OAccesstoi?
OAccesstoiandjinP()
OAccesstoi andjinR()
O Static link -- pointer to next out enclosing scope
ODisplay -- array of pointersto currently active scope
O Referencing environment of R when called in Z as X?

O closure: pointer to procedure & static link or copy of display
ONot aproblemin C or Modula-2 (only level 1 procedures as parameters)

ONot a problem in languages which don’t pass subprograms

Kinds of values

First-Class Value
O passed as a parameter

Oreturned from a subroutine (e.g. function)
Oassigned into avariable
Second-Class Value
O passed as a parameter
anot returnable or assignable
Third-Class Vaue
Ocan't be passed as a parameter, returned or assigned (e.g. Label)

Subprograms show the most variance
O 1st Class - C#, Fortran, Modula-2, Modula-3, Pascal Ada 95, C, C++
0O2nd class in other imperative languages
O3rd classin Ada 83.
0 Some dynamic languages may have a dangling subprobram closure. (references to procedures returned)
0O Read examples 3.32 - 3.41 and section 3.10

Macro Expansion

O Macros started in assemblers
O Textual replacement for repetetive instruction sequences

OMacros moved to high level languages
O Textual replacement
0 Can Cause issues

OExample: C
o#define NAME vaue // avoids "named constants'
O#define SWAP(a,b) {intt=(a); (a) = (b); (b) =t;}
oCal? SWAP(m++,n++)?

O Most modern languages do not have macros.

