
 Chapter 3 - Names, Scopes, and Bindings

 Early languages ... "high level" vs "low level" assembly
 abstraction: names instead of memory locations (although assembly had names)

 easier constructs for understanding

 other advantages came later ... e.g. portability

 Names -- primary abstraction

 Assembly language primarily had "labels" -- names that represent machine locations

 High level languages added abstraction to names

 Names are mostly Identifiers but ’+’ can be a name

 mostly names are alpha-numeric, mostly first character alpha

 binding -- when and to what a name refers

 referencing environment -- complete set of bindings

 Binding time

 binding -- an association between the name and what it names

 binding time -- when this association is created

 Language design time

 Language implementation time

 Coding time

 Compile time

 Link time

 Load time

 Run time

 Binding time (page 2)

 Earlier binding time -- more efficiency
 Later binding times -- more flexibility

 static vs dynamic -- before run time vs at run time

 But "static" may not seem to be static, e.g auto variables

 Time difference between compiler and interpreter solutions

 compile time memory layout

 interpreter may evaluate "declaration" multiple times

 late binding of types can provide polymorphism

 not all storage is bound to a name, C(malloc), Pascal(new) ...

 "Object Lifetime" / Storage Management

 names vs objects

 creation and destruction of objects

 creation and destruction of bindings (may not do objects)

 deactivation and reactivation of bindings

 references to variables, subroutines, types,

 Object lifetimes

 Static: "absolute address", lifetime is program

 Stack: subroutine call allocated, return deallocated, LIFO

 Heap: arbitrary times allocated and deallocated

 Storage Management (page 2)

 Static allocation / bindings
 global variables

 function code

 "local" static/own variables

 large constants (small ones in instruction stream)

 "invisible" support structures

 Fortran before Fortran 90 -- local variables (no recursion)

 Assembler functions often used static variables

 Constants and constant values

 "constant" dependent on runtime value

 constant means different things (bc)

 Stack allocation

 required for recursion

 each call to a subprogram uses different memory

 allocated on entry, deallocated on exit

 typical use of stack for subprograms -- "Call frame" or "activation record)

 arguments to subprogram

 return address

 bookkeeping information

 local variables

 local temporaries

 Most CPUs have a "Frame Pointer" register (fp)

 Storage Management (page 3)

 Stack allocation (page 2)
 subprogram

 preamble -- sets up frame on entry (prologue)

 body -- subprogram code

 postamble -- cleans up the stack (epilogue)

 location on the stack can not be determined at compile time

 access is usually +/- from the fp

 useful for languages without recursion

 Heap allocation

 required for dynamically allocated data

 many different methods to manage a heap

 Issues: speed, fragmentation, re-use, re-use method

 placement: architecture dependent

 garbage collection -- no explicit free, find unreferenced memory and auto free

 automatic vs manual allocation/free

 speed

 error prone

 algorithm complexity

 Scope Rules

 Scope: textual region where a binding is active
 static vs dynamic (Most languages are static)

 What creates scope, closes scope

 subprogram?

 {...}

 specific scope declarations: namespace X { }

 Possible, multiple scope levels -- referencing environment

 Binding rules -- when is scope enforced: deep or shallow

 Static Scope (aka lexical scope)

 determined at compile time by syntax

 simplest: basic -- one scope, global, no declarations

 Fortran pre 90: all global, subprogram local scope, no declarations, i-n integers

 named common across compile units,

 Fortran 90 changed rules

 Scope Rules (page 2)

 Static Scope (continued)
 Algol 60 allowed recursion

 local scope, unique objects per call

 "own" variable -- global but in subprogram scope (C static)

 Added nested subprograms, with new scope

 many languages now have this

 name resolution rules

 closest nested scope

 inner declaration may hide outer

 ways to select scope, scopename:name, ::X ...

 "built-in" / "predefined" scopes

 name visibility in scope

 full scope

 declaration to end of scope

 mutually recursive functions, records with pointer to self

 forward declarations

 declare before use can have issues with full scope

 fpc likes scope.p ... but most likely shouldn’t

 many languages do declaration to end of scope

 some (C#) silently uses "local declarations"

 class a { const int N = 10; void foo() { const int M=N; const int N = 20; ... (M is 20)

 Scope Rules (page 3)

 Python: no declarations, x = ... in T and in S inside T, 2 unique x objects
 declaration vs definition

 C: struct x; struct x {....};

 redeclarations -- may cause problems

 Access to non-local objects (subprograms)

 Access to global is easy ... direct

 Non-local, non-global access is harder

 func a { int b; func c { var d; func f { var g; ... b = d + g; } } }

 Stack based storage, activation record

 what if f is recursive?

 static chains

 displays (not used that often, book doesn’t mention them here)

 Modules -- changing scoping and access rules

 Early programs -- single file

 As programs grew, modularity helped control complexity, separate compilation

 Advantage: speed, don’t have to recompile entire program for a small change

 Various versions of this appeared: C simple separate compilation

 Modules -- way to collect related functionality for separate compilation

 Added "information hiding"

 Added new scoping rules

 Scope Rules (page 3)

 Modules (continued)
 Contained a variety of "objects" -- subroutines, constants, variables ...

 Typically a way to control what was visible from "outside" (export)

 A way to get access to a Module (import)

 Appeared late 70s, early 80s

 Clu, Modula, Modula-2, Modula-3, Turing, Ada 83 ...

 Term package replaces module in some current languages

 C++ has "namespace" ... multiple file can define it, using clause for access

 Separate compilation

 libraries and parts of a program

 can recompile one without recompiling the other

 Modula-2 had definition files and implementation files

 when does a change require recompilation?

 Objects

 Next idea for modularity and re-usability

 new features: inheritance and dynamic method invocation

 Someplace in here we got operator overloading as well as method overloading

 some had new visibility rules

 introduced ideas of setters and getters

 Scope Rules (page 4)

 Dynamic Scope
 binding depends on run time

 binding is most recent binding that is active

 Languages: bc, APL, Snobol, Tcl, TeX, early lisp, perl

 Type checking may need to be done at run time

 Other things may be dynamic too, var2.bc

 Implementing Scope

 Static scope: symbol table

 enter ID, new_scope, exit_scope

 key/value DB

 can be saved in executable for runtime lookups in debugger

 Compiler Construction class spends lots of time on this

 Dynamic scope: runtime DB for lookups, can be expensive

 Can key/value DB

 may be list of objects (linear may not be bad here)

 depends on the semantics of the language

 aliases:

 two or more names that refer to a single "object"

 can cause issues with optimization

 C99 added a "restrict" qualifier ... no aliases

 parameters can cause this also

 Scope Rules (page 5)

 overloading:
 same name/feature for two or more objects, often subprograms

 + works on multiple types

 need some mechanism of selection, e.g. parameter types

 Ada: allows same name in different enumeration types

 type Month is (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sept, Oct, Nov, Dec)

 type Base is (Bin, Oct, Dec, Hex);

 can determine correct on via type of expressions

 can specify. e.g Month’(Dec)

 some languages require type prefix (Modula-3, C#)

 Ada, C++ lots of overloading, subprograms and operators

 Haskel allows "creating" infix operators that call functions

 let a @@ b = a * 2 + b

 Haskel also allows overloading with types

 overloading vs coercion, polymorphism (covered later)

 Binding of referencing environments with subprogram parameters/pointers

 Reference to a subprogram
 Some languages allow "procedure/function parameters"

 Some languages allow pointers to subprograms

 deep vs shallow binding of the reference environment (deep-shallow.txt)

 static scoping needs deep binding here

 subroutine closure: [reference to subprogram, reference to reference environment]

 dynamic bindings: Need the bindings at the time of call

 e.g. IF bc had function pointers, need current set of names bound

 static bindings: depends on language

 C: has function pointers

 functions are never nested

 environment: local and global

 call creates local, global is global

 no closure needed, just pointer to function

 Languages with nested functions/procedures have issues

 need the referencing environment at time when procedure is passed

 Binding of referencing environments (page 2)

 Example 1, Python: (parameters)
 def A(I,P):
 def B():
 print(I)
 if I > 1:
 P()
 else:
 A(2, B)
 def C():
 pass # do nothing
 A(1,C)

 What is printed? 1 or 2?

 shallow: 2

 deep: 1

 Why?

 Binding of referencing environments (page 3)

 Example 2, Pascal-like (local variables)
 var i : integer; (* global *)
 procedure Z (procedure X) { X(1) ... }
 procedure P() {
 var j : integer;
 procedure R(value m:integer) {
 if m >= 3 then { writeln(j * m); X(R); }
 writeln(m);
 R(m+i);
 }
 j := i * 2;

 R(1);

 }

 ... i := 10 ... P();

 Access to i?

 Access to i and j in P()

 Access to i and j in R()

 Static link -- pointer to next out enclosing scope

 Display -- array of pointers to currently active scope

 Referencing environment of R when called in Z as X?

 closure: pointer to procedure & static link or copy of display

 Not a problem in C or Modula-2 (only level 1 procedures as parameters)

 Not a problem in languages which don’t pass subprograms

 Kinds of values

 First-Class Value
 passed as a parameter

 returned from a subroutine (e.g. function)

 assigned into a variable

 Second-Class Value

 passed as a parameter

 not returnable or assignable

 Third-Class Value

 can’t be passed as a parameter, returned or assigned (e.g. Label)

 Subprograms show the most variance

 1st Class - C#, Fortran, Modula-2, Modula-3, Pascal Ada 95, C, C++

 2nd class in other imperative languages

 3rd class in Ada 83.

 Some dynamic languages may have a dangling subprobram closure. (references to procedures returned)

 Read examples 3.32 - 3.41 and section 3.10

 Macro Expansion

 Macros started in assemblers
 Textual replacement for repetetive instruction sequences

 Macros moved to high level languages

 Textual replacement

 Can Cause issues

 Example: C

 #define NAME value // avoids "named constants"

 #define SWAP(a,b) {int t = (a); (a) = (b); (b) = t; }

 Call? SWAP(m++,n++)?

 Most modern languages do not have macros.

