Chapter 6 -- Control Flow

O order of operations as a program executes
O sequentia (sequencing)

O unstructured (e.g. goto, typically in assembly)

O selection (aka alternation)

Oiteration

O subprogram/procedural (Chapt 9)

drecursion

o concurrency/parallel (Chapt 13)

O exception handling (Chapt 13)

O speculation (Chapt 13)

O nondeterminacy

O Expression Evaluation
Ooperators (e.g. +, - %, ...)
O operands (aka arguments)
O Notations:
Oprefix: Opab or op(ab) or (op ab)
ginfix: aOpb
O postfix: ab Op

Control Flow (page 2)

O Expression Evaluation (cont)
O Parenthesis group operators and operands

OLisp: (* (+13)2)
oML: max (2+3) 4 ;;
o Smalltalk(Mixfix): myBox displayOn: myScreen at: 100@50
O Precedence and Associativity
Oa+b*c”rd”e/f ? order of operations?
Oresults differ based on order (precedence)
Oa+b-c+b-d ?order of operations?
Oresults can differ based on order (associativity)
O Expression issues:
OPascal: ifa<bandc<dthen...
Ois. a<(bandc)<d
OFortran: 4**3**2
0262144 -- right association
OAda 4**3**2
O syntax error -- no association, must provide ()s
0O Standard math associativity:
a+,-,*,/,%-- left toright
a** (or) -- right to | eft

Precedence from book

Fortran Pascal C Ada
++, == (post-inc., dec.)
* ok not ++, == (pre-inc., dec.), abs (abs
+, — (unary), not, **
&, * (address, contents of),
L, = (logical, bit-wise not)
*, / *, /> * (binary), /, *, /, mo
div, med, and % (modulo division)
+, = (unary +, = (unary and +, = (binary) +, = (un
and binary) binary), ox
<<, 5> +, — {bir
(left and right bit shift) & (conc:
.eq., .ne., .1t ., <, €=, > d= <, €= 3 d= = J=_ <

de., .gt., .ge. =, <>, IN (inequality tests)
(comparisons)
.not. ==, I= (equality tests)

& (bit-wise and)

= '] s
i II.I'\.I+ WETHE i n'l.r.i_'II'li._.l"'ri_h -i'\.."lll

Control flow (page 4)

0 Some languages allow programmer precedence and associativity
OHaskell: infixr 8

aright-to-left, next highest precedence
ainfixl, infix, precedence levels from 0 to 9 (highest)
OAssignment operator in expressions (like C: a=b = c+d;
Otypicaly right to left
O assignment produces a side effect vs pure expression based language
Opure functional have no side effects, e.g. an expression will aways generate the same value
Oreferentially transparent.
Oin an imperative language, variables can change value so an expression may have different values

O computation by side effect

Languages in different classes
O Pure Functional: Haskell, Miranda, and some other obscure languages
OMostly Functional: ML, Lisp, Erlang, and a bunch of other languages
OMostly Imperative with functional features. C#, Scala, Python, Ruby, ...

References and Vaues

O Assignment appears ssimple ... but there are some issues
oL-valuevs R-value

Oa=b; // aisanL-vaue, bisan R-value
Oa=b+c; //aisanL-vaue bisan R-value
Olvalue = rvalue;
Oacomplicated expression can be an I-value: (f(a)+3)->b[c] =2;//inC
O context defines|-value/r-value: t=a,a=b;b=t; //C
o Differences:
OPascal & Clu: b:=2; c:=b;a:=b+c;
O Pascal -- box model -- copies data (value model)
O Clu -- pointer model -- copies pointers (reference modes)
O Java uses value model for built-in types and reference model for classes
O C# allows choice for user defined, classis reference, struct isavalue
O Reference model -- r-value needs a dereference, either implicit or explicit
OHasissuesif built-in types are value, classes are reference
OJava: wrapper classto insert integers into hashtable collection object ...

O recent C# and Java 5+ do automatic boxing

Orthogonality of features...

O features can be used in "any" combination
Oalgol 68 -- designed for orthogonality

O every statement has avalue (no "void" functions)
Oa:=if b<cthendelsee;
Oa:= begin f(b); g(c); end;
ag(d); 2+3;
OC not quite similar but both allow assignment in expressions
oC’'sproblem: =vs==
O many bugs dueto this feature
0O Some languages use := for assignment to avoid this
ao(My ATL/X for CSCI 450 uses <-- for assignment.)
O lssue for imperative languages ... they depend on side effects
0 Often update variables
Oa<--a+1
Ob.c[i].d <-- b.c[i].d * f;
oa[f(i)] <--af(i)] +1; vs j <-1(i); &[j] = &j] + 1;
Oalgol 68, C ... use OP=, likeat=1,
O prefix/postfix increment/decrement ++A, B--

O need a proper definition of sequence of operations (precedence)

O*p++ = *gt+;

Side effects and assignment

o Clu, ML, Perl, Python, ... a,b=c,d;
aswap: a b=Db, a (order of operations again important)

Oa b, c=1(d, g f); // returnsatuple

Olnitialization
O default value vs none
O C global variables default value.
O Different languages provide different rules
O aggregate initialization -- many languages
oOfloating point NaN value?
O lIssue of catching use of uninitialized variables for other types
0 Compiler static checking of uninitialized variable use

O Many Object-oriented languages have constructors (static and dynamic objects)

O Operator ordering --
O precedence, associativity -- some ordering specified ... but
oa-f(b)-c*d
owhat if f(b) setsa? c*d before a-f(b)?
ofunction call: f(a, g(b), h(c))
0 How does optimization change this?
O Many languages leave ordering as "undefined"

O But may be require compiler to obey parenthesis ...

More ordering

0 Some languages allow for re-ordering based on math
a=b+c, d=b+r+c;ASa=b+c, d=a+r;

Olssuewith: a- ¢ + d wherea+ d overflows

0 Should it be checked or not? Depends on language
O reordering an numeric stability .. real numbers

O adding small numbers first may change result.
O short circuit evaluation

Oa&& f(b) -- doesf(b) have needed side effects?

ap = list; while (p && p->key !=val) p = p->next;

Odoesn’'t work in Pascal ... uses full evaluation
O can be used to avoid out of bounds aso ...

0 Some languages offer: "or" and "or else”, "and", "and then" (Ada)

Control Flow

0 Assembly language ... conditional and unconditional jumps -- unstructured
OEarly languages. unstructured also

if (A .It. B) goto 10 ! Fortran (and basic aso)

10: code
oDijkstra-- "Goto Letter" CACM 11, 3 (March 1968) 147-148
O Alternatives: "structured programming", modular development, stepwise refinement
O sequencing, selection, iteration
o Done by algol 60 first: if/then/else, for, while
O Case/switch in Algol W
O repeat/until
O Goto mostly limited to inside afunction / not in the language
O Functions/procedures have returns
Oreturn multi levelsin nested routines?
O historic languages allowed gotos to scope visible labels (Algol 60, PL/1, Pascal)
awould require unwinding of the stack
O How about passing in alabel and being able to go to that one?
o C "library solution” setjump/longjump.

Errors and other exceptions

0 Deep return more often happens in an error condition
0O Some languages provide an exception mechanism

Oerror return via different path
O needs to unwind stack
atry {..} catch... typical
Omore later
O Continuations
O generalization of return to a reference environment
0 Scheme and Ruby do it, implemented with a closure
o Simple Ruby: cont.ruby (src)
0 Complex Ruby: cont2.ruby (src)
0 See why a Fiber is preferred (light weight cooperative concurrency)
a0 Can build many things with this:

O gotos, midloop exits, multilevel returns, exceptions, call-by-name parameters, coroutines (Fibers)

Sequencing

O controlling the order of execution (imperative, assignments)
Oa; b;c;

Oaisdone before b, b before c. issue: subprogram with a side effect

O block of code: can bein begin/end or {...} aka"compound statement”

oagol 68 and others, value of compound statement is last "statement”

0 Common Lisp, choice by programmer

O sequencing is"useless" if no side effects may occur

aif functions can’t have side effects (Euclid, Turing) sequencing may be changed

Selection

aif ... then ... else

odangling else (in some languages, Algol 60, Pascdl, ...)

O some languages have elsif keyword

alisp has similar

(cond
(=AB)

()
(=AC)
()
(=AD)
()
(T
(--)))

Selection (Page 2)

0 Chort-circuit conditions
o Some language implicit (C) and some explicit (Ada)
O case/switch statements (aka computed goto)
areplaces if/then/elsif/elsif/elsif/.../else
dVarious versions
o single value/single statement
amultiple value/single statement
o multiple value/break
Odefault / otherwise
O range cases
Oimplementation varies: if/then, jump tables, combo

O added to allow jump tables, faster implementation

Iteration
OWay to perform similar operations (so is recursion)
o allows for more than fixed sized tasks
Oimperative tends to use iteration, functional tends to use recursion
OLoops are typically executed for their side effects.
OTwo primary types. logic controlled, enumeration controlled

Iteration (page 2)

oLogic:
aowhileedos; // may never execute s
Orepeat swhilee; Or repeat suntil) // aways executes s
O Enumeration:
o Python: for ein mycollection (mycollection iterable type)
OFortran 90: doi =1, 10, 2..... enddo
OAlgol 60: fori :=1step 2 until 10do ...
a0 number of times through loop defined at compile time
OPascal: for V := el to/ downto e2 do s
Oel and e2 evaluated once before loop, not fixed at compile time
Osetpisonly by one or by -1
Oforxinset_exprdos
ginfinite loop problem with overflow
ONote: Cislogic: for (el; €2; e3) s->el; while(e2) { s, €3}
O |ssues.
Oloop entry, loop exit?
o Fortran jump to label, exit via break/exit
0 can loop body modify "control variable"
0 can loop body modify termination condition
aiscontrol variable available outside loop

Orestarting the loop out of order, continue

Iteration (page 3)

O lterators
ogenera form: function that yeilds many values, one for each "call"

0 Can also generate a collection
O Python: for i in range(first, last, step)
O chapel iterator:
iter fib(n: int) {
var (current, next) = (0, 1);
for 1..n{
yield current;

(current, next) = (next, current + next);

}
}

Ouse:
write("First few Fib numbers are: ");
for ivin fib(10) do
write(iv, ", ");
writeln("...");
O Collections can be data structures ... not as obvious how to iterate
0 book shows a python binary tree class with an iterator

O aso shows ajavaone, different techniques

Iteration (page 4)

O Object iterators have a class initialization and a next method
O object keeps state

OC++ 11 dlows ++ operator on an iterator as the next with iterator as a pointer
Oread book on scheme, ruby and smalltalk iterators
Oregular functions can simulate iterators
O Other looping constructs
afor (;;){ ...} //the"officia" way to do aninfinite loop in C, exit via"break"
Oada label: loop exit label when ... end loop label;

Recursion
0O Some languages (Fortran 77, early basic, ...) do not allow recursion
0 Some functional languages do not allow iteration
OMost languages now have both iteration and recursion
0O Use may mostly be matter of taste
O and how the problem is presented:
osum 1<=i<=10f(i)
ogcd(a,b):
Oaifa=b
Ogcd(a-b,b), ifa>b
Ogcd(a, b-a),if b>a

Recursion (page 2)

0 Can use either for these problems
Orecursion is often the default for functional languages ... no variables need to be set

O Standard recursion
O evaluate arguments at call
O new activation record (on stack)
Otail recursion can be easily converted into iteration
Ogcd example:
drecursive:
int ged(int a, int b) { /* assumea, b>0%*/
if (a==D) return g
elseif (a> b) return gcd(a-b, b);
else return gcd(a,b-a);
}
O compiler done iterative solution removing tail recursion
int gcd(int & int b) { /* assumea b>0*/
Start:
if (a==D) return g
elseif (a>b) { a=ab; goto start; }
else{b=Db- g goto start; }
}

Recursion (page 3)

O Programmer can write code that uses tail recursion to allow compiler to use iteration
O Recursive solutions are not necessarily algorithmically inferior

0 Some recursive functions cost alot: e.g. fib()
fibx:if x==0]|| x == 1return 1;
elsereturn fib(x-1) + fib(x-2);
O exponentia solution when sequential possible (see chapel iterator)

OBut, it is possible to do with tail recursion (which is O(n))

Parameters. Applicative- and Normal-Order evaluation

Oassumption: parameters (arguments) are evaluated before passing to a subprogram
o Applicative-order ...

ONormal-Order: passing some representation of the argument for later evaluation
O Macros do Normal-Order
0 Short Circuit boolean evaluation is also Normal-Order

OOnly evaluated if needed

O name parameters. passes two representations: Ivalue thunk, rvalue thunk
0 some language designers ignore beneficial semantics due to "implementation cost”
O better languages may trade a bit of speed for better semantics

O Haskell and Miranda are side-effect free and use normal-order (lazy) evaluation for all parameters

Lazy Evaluation

O Most imperative languages use applicative-order
OIn some cases, normal-order can lead to faster code

Oin some cases (like short circuit code) will never evaluate an argument
OHaskell uses normal-order by default
O Scheme has functions called delay and force
aimplements lazy evaluation
Owith no side effect, same as normal-order
Okeepstrack of which arguments have been evaluated
aif needed more than once, evaluates only once
OA delayed expression is sometimes called a promise
Olazy data structure -- fleshed out on demand
OAlgol 60 subroutine headers indicate type of parameter Applicative or normal

Nondeterminacy and other flow control
O some languages alow a method of non-determinacy
OChapel: foreachiinl...100; s
O Sequential chapel -- not known, s must work for any order
O Parallel chapel -- s can be done in paralel, even on different machines
Oforeach | inlocales; f()

arunsf() in parallel on all machines

