
 Chapter 6 -- Control Flow

 order of operations as a program executes
 sequential (sequencing)

 unstructured (e.g. goto, typically in assembly)

 selection (aka alternation)

 iteration

 subprogram/procedural (Chapt 9)

 recursion

 concurrency/parallel (Chapt 13)

 exception handling (Chapt 13)

 speculation (Chapt 13)

 nondeterminacy

 Expression Evaluation

 operators (e.g. +, - %, ...)

 operands (aka arguments)

 Notations:

 prefix: Op a b or op(a,b) or (op a b)

 infix: a Op b

 postfix: a b Op

 Control Flow (page 2)

 Expression Evaluation (cont)
 Parenthesis group operators and operands

 Lisp: (* (+ 1 3) 2)

 ML: max (2+3) 4 ;;

 Smalltalk(Mixfix): myBox displayOn: myScreen at: 100@50

 Precedence and Associativity

 a + b * c ^ d ^ e / f ? order of operations?

 results differ based on order (precedence)

 a + b - c + b - d ? order of operations?

 results can differ based on order (associativity)

 Expression issues:

 Pascal: if a < b and c < d then ...

 is: a < (b and c) < d

 Fortran: 4**3**2

 262144 -- right association

 Ada: 4**3**2

 syntax error -- no association, must provide ()s

 Standard math associativity:

 +, -, *, /, % -- left to right

 ** (or ^) -- right to left

 Precedence from book

 Control flow (page 4)

 Some languages allow programmer precedence and associativity
 Haskell: infixr 8 ^

 right-to-left, next highest precedence

 infixl, infix, precedence levels from 0 to 9 (highest)

 Assignment operator in expressions (like C: a = b = c+d;

 typically right to left

 assignment produces a side effect vs pure expression based language

 pure functional have no side effects, e.g. an expression will always generate the same value

 referentially transparent.

 in an imperative language, variables can change value so an expression may have different values

 computation by side effect

 Languages in different classes

 Pure Functional: Haskell, Miranda, and some other obscure languages

 Mostly Functional: ML, Lisp, Erlang, and a bunch of other languages

 Mostly Imperative with functional features: C#, Scala, Python, Ruby, ...

 References and Values

 Assignment appears simple ... but there are some issues
 L-value vs R-value

 a = b; // a is an L-value, b is an R-value

 a = b + c; // a is an L-value, b is an R-value

 lvalue = rvalue;

 a complicated expression can be an l-value: (f(a)+3)->b[c] = 2; // in C

 context defines l-value/r-value: t = a; a = b; b = t; // C

 Differences:

 Pascal & Clu: b := 2; c := b; a := b + c;

 Pascal -- box model -- copies data (value model)

 Clu -- pointer model -- copies pointers (reference modes)

 Java uses value model for built-in types and reference model for classes

 C# allows choice for user defined, class is reference, struct is a value

 Reference model -- r-value needs a dereference, either implicit or explicit

 Has issues if built-in types are value, classes are reference

 Java: wrapper class to insert integers into hashtable collection object ...

 recent C# and Java 5+ do automatic boxing

 Orthogonality of features ...

 features can be used in "any" combination
 algol 68 -- designed for orthogonality

 every statement has a value (no "void" functions)

 a := if b < c then d else e;

 a := begin f(b); g(c); end;

 g(d); 2+3;

 C not quite similar but both allow assignment in expressions

 C’s problem: = vs ==

 many bugs due to this feature

 Some languages use := for assignment to avoid this

 (My ATL/X for CSCI 450 uses <-- for assignment.)

 Issue for imperative languages ... they depend on side effects

 Often update variables

 a <-- a + 1

 b.c[i].d <-- b.c[i].d * f;

 a[f(i)] <-- a[f(i)] + 1; vs j <-- f(i); a[j] = a[j] + 1;

 algol 68, C ,... use OP=, like a+= 1;

 prefix/postfix increment/decrement ++A, B--

 need a proper definition of sequence of operations (precedence)

 *p++ = *q++;

 Side effects and assignment

 Clu, ML, Perl, Python, ... a, b = c, d;
 swap: a, b = b, a; (order of operations again important)

 a, b, c = f(d, e, f); // returns a tuple

 Initialization

 default value vs none

 C global variables default value.

 Different languages provide different rules

 aggregate initialization -- many languages

 floating point NaN value?

 Issue of catching use of uninitialized variables for other types

 Compiler static checking of uninitialized variable use

 Many Object-oriented languages have constructors (static and dynamic objects)

 Operator ordering --

 precedence, associativity -- some ordering specified ... but

 a - f(b) - c * d

 what if f(b) sets a? c*d before a-f(b)?

 function call: f(a, g(b), h(c))

 How does optimization change this?

 Many languages leave ordering as "undefined"

 But may be require compiler to obey parenthesis ...

 More ordering

 Some languages allow for re-ordering based on math
 a = b + c; d = b + r + c; AS a = b + c; d = a + r;
 Issue with: a - c + d where a + d overflows

 Should it be checked or not? Depends on language

 reordering an numeric stability .. real numbers

 adding small numbers first may change result.

 short circuit evaluation

 a && f(b) -- does f(b) have needed side effects?

 p = list; while (p && p->key != val) p = p->next;

 doesn’t work in Pascal ... uses full evaluation

 can be used to avoid out of bounds also ...

 Some languages offer: "or" and "or else", "and", "and then" (Ada)

 Control Flow

 Assembly language ... conditional and unconditional jumps -- unstructured	
 Early languages: unstructured also

 if (A .lt. B) goto 10 ! Fortran (and basic also)

 ...

 10: code

 Dijkstra -- "Goto Letter" CACM 11, 3 (March 1968) 147-148

 Alternatives: "structured programming", modular development, stepwise refinement

 sequencing, selection, iteration

 Done by algol 60 first: if/then/else, for, while

 Case/switch in Algol W

 repeat/until

 Goto mostly limited to inside a function / not in the language

 Functions/procedures have returns

 return multi levels in nested routines?

 historic languages allowed gotos to scope visible labels (Algol 60, PL/1, Pascal)

 would require unwinding of the stack

 How about passing in a label and being able to go to that one?

 C "library solution" setjump/longjump.

 Errors and other exceptions

 Deep return more often happens in an error condition
 Some languages provide an exception mechanism

 error return via different path

 needs to unwind stack

 try {..} catch ... typical

 more later

 Continuations

 generalization of return to a reference environment

 Scheme and Ruby do it, implemented with a closure

 Simple Ruby: cont.ruby (src)

 Complex Ruby: cont2.ruby (src)

 See why a Fiber is preferred (light weight cooperative concurrency)

 Can build many things with this:

 gotos, midloop exits, multilevel returns, exceptions, call-by-name parameters, coroutines (Fibers)

 Sequencing

 controlling the order of execution (imperative, assignments)
 a ; b; c;

 a is done before b, b before c. issue: subprogram with a side effect

 block of code: can be in begin/end or {...} aka "compound statement"

 algol 68 and others, value of compound statement is last "statement"

 Common Lisp, choice by programmer

 sequencing is "useless" if no side effects may occur

 if functions can’t have side effects (Euclid, Turing) sequencing may be changed

 Selection

 if ... then ... else

 dangling else (in some languages, Algol 60, Pascal, ...)

 some languages have elsif keyword

 lisp has similar

 (cond

 ((= A B)

 (...))

 ((= A C)

 (...))

 ((= A D)

 (...))

 (T

 (...)))

 Selection (Page 2)

 Chort-circuit conditions
 Some language implicit (C) and some explicit (Ada)

 case/switch statements (aka computed goto)

 replaces if/then/elsif/elsif/elsif/.../else

 Various versions

 single value/single statement

 multiple value/single statement

 multiple value/break

 default / otherwise

 range cases

 implementation varies: if/then, jump tables, combo

 added to allow jump tables, faster implementation

 Iteration

 Way to perform similar operations (so is recursion)

 allows for more than fixed sized tasks

 imperative tends to use iteration, functional tends to use recursion

 Loops are typically executed for their side effects.

 Two primary types: logic controlled, enumeration controlled

 Iteration (page 2)

 Logic:
 while e do s; // may never execute s

 repeat s while e; Or repeat s until e; // always executes s

 Enumeration:

 Python: for e in mycollection (mycollection iterable type)

 Fortran 90: do i = 1, 10, 2 enddo

 Algol 60: for i := 1 step 2 until 10 do ...

 number of times through loop defined at compile time

 Pascal: for V := e1 to / downto e2 do s

 e1 and e2 evaluated once before loop, not fixed at compile time

 setp is only by one or by -1

 for x in set_expr do s

 infinite loop problem with overflow

 Note: C is logic: for (e1; e2; e3) s -> e1; while(e2) { s; e3 }

 Issues:

 loop entry, loop exit?

 Fortran jump to label, exit via break/exit

 can loop body modify "control variable"

 can loop body modify termination condition

 is control variable available outside loop

 restarting the loop out of order, continue

 Iteration (page 3)

 Iterators
 general form: function that yeilds many values, one for each "call"

 Can also generate a collection

 Python: for i in range(first, last, step)

 chapel iterator:

 iter fib(n: int) {

 var (current, next) = (0, 1);

 for 1..n {

 yield current;

 (current, next) = (next, current + next);

 }

 }

 use:

 write("First few Fib numbers are: ");

 for iv in fib(10) do

 write(iv, ", ");

 writeln("...");

 Collections can be data structures ... not as obvious how to iterate

 book shows a python binary tree class with an iterator

 also shows a java one, different techniques

 Iteration (page 4)

 Object iterators have a class initialization and a next method
 object keeps state

 C++ 11 allows ++ operator on an iterator as the next with iterator as a pointer

 read book on scheme, ruby and smalltalk iterators

 regular functions can simulate iterators

 Other looping constructs

 for (;;) { ... } // the "official" way to do an infinite loop in C, exit via "break"

 ada: label: loop exit label when ... end loop label;

 Recursion

 Some languages (Fortran 77, early basic, ...) do not allow recursion

 Some functional languages do not allow iteration

 Most languages now have both iteration and recursion

 Use may mostly be matter of taste

 and how the problem is presented:

 sum 1 <= i <= 10 f(i)

 gcd(a,b):

 a, if a = b

 gcd(a-b,b), if a > b

 gcd(a, b-a), if b > a

 Recursion (page 2)

 Can use either for these problems
 recursion is often the default for functional languages ... no variables need to be set

 Standard recursion

 evaluate arguments at call

 new activation record (on stack)

 tail recursion can be easily converted into iteration

 gcd example:

 recursive:

 int gcd(int a, int b) { /* assume a, b > 0 */

 if (a == b) return a;

 else if (a > b) return gcd(a-b, b);

 else return gcd(a,b-a);

 }

 compiler done iterative solution removing tail recursion

 int gcd(int a, int b) { /* assume a, b > 0 */

 start:

 if (a == b) return a;

 else if (a > b) { a = a-b; goto start; }

 else {b = b - a; goto start; }

 }

 Recursion (page 3)

 Programmer can write code that uses tail recursion to allow compiler to use iteration
 Recursive solutions are not necessarily algorithmically inferior

 Some recursive functions cost a lot: e.g. fib()

 fib x: if x == 0 || x == 1 return 1;

 else return fib(x-1) + fib(x-2);

 exponential solution when sequential possible (see chapel iterator)

 But, it is possible to do with tail recursion (which is O(n))

 Parameters: Applicative- and Normal-Order evaluation

 assumption: parameters (arguments) are evaluated before passing to a subprogram

 Applicative-order ...

 Normal-Order: passing some representation of the argument for later evaluation

 Macros do Normal-Order

 Short Circuit boolean evaluation is also Normal-Order

 Only evaluated if needed

 name parameters: passes two representations: lvalue thunk, rvalue thunk

 some language designers ignore beneficial semantics due to "implementation cost"

 better languages may trade a bit of speed for better semantics

 Haskell and Miranda are side-effect free and use normal-order (lazy) evaluation for all parameters

 Lazy Evaluation

 Most imperative languages use applicative-order
 In some cases, normal-order can lead to faster code

 in some cases (like short circuit code) will never evaluate an argument

 Haskell uses normal-order by default

 Scheme has functions called delay and force

 implements lazy evaluation

 with no side effect, same as normal-order

 keeps track of which arguments have been evaluated

 if needed more than once, evaluates only once

 A delayed expression is sometimes called a promise

 lazy data structure -- fleshed out on demand

 Algol 60 subroutine headers indicate type of parameter Applicative or normal

 Nondeterminacy and other flow control

 some languages allow a method of non-determinacy

 Chapel: foreach i in 1 ... 100 ; s

 Sequential chapel -- not known, s must work for any order

 Parallel chapel -- s can be done in parallel, even on different machines

 foreach l in locales ; f()

 runs f() in parallel on all machines

