Threads (Chapter 11)

O Process -- Program, Memory (text, data, bss, heap, stack), execution
O stack - directly linked to execution

O function call frame, on the stack
O CPU -- execution "engine"
O Early computers. one CPU, memory ...
0 Shared computing, multiple processes on one CPU
OTypical use: round robin, quantum
OMid 1970s -- Big Iron (cray 1) down to microprocessors (intel 8080)
Oldeaat that point: Elephant (one big CPU) vs army of ants (microprocessors)
O Parallel Computing -- army of ants, each ant ran "sequential”
ONow: One"box", multiple CPUs (10s/box), one big memory
O Possibility of having multiple execution points inside one process
O Concurrency -- multiple execution points inside one process
O But, not new, used in 1980 (and possibly earlier)
oAt UW: ssimulate 4096 CPUs on asingle CPU?
O Multiple threads of control in one process
O Multiple stacks (one for each thread of control)
0 Round-robin the threads

Concurrency, Parallel and Distributed

What is the difference between these ideas?
ONelson’ s definitions -- may not be accepted industry wide, but ...

O Concurrency -- Multiple threads of control in a single process
OParalel -- A collection of processes, running on a collection of CPUs, cooperating to solve asingle problem. CPUs
geographically close (e.g same room or building.)

O Distributed -- A collection of CPUs, most likely geographically distributed, providing services for avariety of uses. e.g. google

Note: Concurrency can be used without multiple CPUs. Parallel and Distributed can’t work on asingle CPU.
a Concurrency can be very useful with a GUI, one thread per visual element.

Threads -- concurrency mechanism
ONote: threads can be useful in the parallel and distributed processes.
OEarly Threads:
O User space (OS didn’t know anything about them)
ONow:
O Thread packages, language features, OS support

Basic Thread |deas

0 Single process, multiple threads (stack and execution)
0 Can simplify code for asynchronous code (e.g. GUI)

O Threads can share global or heap memory. (Typically not stack)

O Process can share memory, but it is more difficult. (ch 15 & 17)
OWith multiple CPUs available, "clock” time can be reduced.
O Interactive programs can "spawn CPU intensive tasks on athread" and come back to user quickly.
O Threads are useful even on a uniprocessor.

O Simulation example

O GUI example

O Issue of blocked vs running threads

o With OS support, blocked threads don’t block other threads

Thread consists of:
Ostack (local variablesin functions, call sequence)
OCPU registers (PC, status,)
O"Thread Local Storage" -- Global in the thread, Local to the thread
O errno -- two threads calling a system call at the same time
O Shares the rest of the process ... pid, CWD, files, heap, ...

PThreads -- POSIX threads

A thread library defined by the POSIX group (POSIX.1-2001)

O Various implementations have been done.
ONeed athread ID ... but may be astruct ... so
aint pthread equal (pthread t tidl, pthread t tid2);
O compare two threads, return non-zero => equal, O is not equal
O pthread_t pthread self(void);
O Gets the current thread id.
OThread Creation
O Program after execxx() starts as a single thread program.
O Threaded program then starts threads
aint pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void * (*start_routine) (void *), void *arg);
Othread -- pointer to a pthread_t variable
Oattr -- May be NULL (more later)
Ostart_routine -- pointer to thread' s "main” function
Oarg -- pointer passed to the start routine
O See pth-id.c: aprogram to print the "thread id"

Thread Termination & Joining

o Any thread calling exit(3) or _exit(2) exits the process and kills all threads
OA default action signal that terminates will terminate the entire process
O Single thread "exit" terminates only calling thread

ovoid pthread _exit (void *rva_ptr)
O may return a pointer
O"start routine” can just return and return value is pthread_exit parameter
0" Joining athread"
o Similar to await(), but for athread
aint pthread_join(pthread_t thread, void **retval);
O Calling thread blocks if "thread" is still running
O After "thread" returns, calls pthread exit() or is canceled, returns from join
OPTHREAD_CANCELED isapossible return value
Oreturn value is O for success, non-zero is an error number
OEDEADLK - mutual joinsor join calling thread
OEINVAL - thread already joined or process waiting to join
O ESRCH - no thread with that ID
Do not return pointersto local variables ... "automatic variable mis-use"
O Joined thread reclaims the resources of the thread

Other Calls

aint pthread _cancel (pthread t thread);
O Causes thread to terminate asif it did pthread_exit(PFTHREAD_CANCELED)

avoid pthread_cleanup push(void (*routine)(void *), void * arg);
O schedules athread to be run at pthread_exit or pthread_cancel time
Oadds "routine” to a stack of routines for the calling thread

Ovoid pthread cleanup_pop(int execute);

O pops the top routine off the thread’ s cleanup stack, not run if executeis 0

Oint pthread_detach(pthread t thread);
O sets the thread to be "un-joinable" and automatically reclaims resources at thread exit

O pthread_join() on thisthread will return an error

Thread Synchronization

Race conditions happen even easier in threads
O Consider pth-race.c

OWhat happens?
OWhy does that happen?
O0What about "read only" variables?
OHow can you fix it?
O Critical section -- section of code that must happen "atomically” -- no interruption of the process
O Software -- Peterson’s solution
O Turn based approach -- but works only for two threads
O Hardware assist approaches:
O Mutex -- Mutual Exclusion
aint mutex = 0;
while (test_and_set(&mutex) == 1) /* spin */;
critical-section;
mutex = 0;
O Problem -- busy wait.
O Solution -- have the OS block the thread until it can enter the critical section.

Mutex -- solution for mutual accessto a shared variable

Mutex -- alock to block accessto acritical section
Oone thread in the critical section at atime

Oall accessto shared variable covered by a mutex
O Pthreads -- need to initidize it:
int pthread_mutex_init(pthread mutex_t * mutex, const pthread mutexattr t * attr);
O pthread_mutexattr_t * may be NULL for standard attributes
0 When done, the mutex may be destroyed
int pthread mutex_destroy(pthread_mutex_t * mutex);
O no need to destroy if calling exit
O Entry to critical section -- lock, block if held
int pthread_mutex_lock(pthread_mutex_t * mutex);
Oreturn value O if successful, should check
ONon-blocking try to lock
int pthread mutex_trylock(pthread mutex_t * mutex);
O Error if locked, errno is EBUSY
O Exit to critical section -- unlock and let othersin
int pthread_mutex_unlock(pthread _mutex_t * mutex);

Mutex (page 2)

O Static initialization of a mutex
pthread_mutex_t mutex = PTHREAD MUTEX_INITIALIZER,;

OTypical code outline:
if (pthread_mutex_lock(& mutexvar)) {
[* Error condition */
} else{
[* critical section */
if (pthread_mutex_unlock(& mtexvar)) {
* error condition */

}
}

O Critical section should be
O as short as possible
0 have no loops unless absol utely necessary

O never block in the critical section

O See pth-mutex.c

Mutex issues

0O Deadlock -- circular waiting
Oush: child blocked writing to pipe, parent waiting on child

Oomutex: triesto lock amutex aready held
O multiple mutexes:

OA holdsM1, triesfor M2 (blocked)

OB holds M2, tries for M1 (blocked)

Olonger chains of holding and waiting with circular wait are possible

Avoid deadlocks with a mutex lock ordering

Ocan’'t order? Use pthread_mutex_trylock and don’t block

Problem: Readersand Writers

0O Shared Data Structure ... e.g. Balanced Binary Tree
O Reader threads -- doing lookupsin the tree

OWriter threads -- doing inserts into the tree
O Problems?
O race without mutex protection
O problem here?
O two readers can share at the same time with no race
owriters need exclusive access, can't share with readers
O Solution?
OA new kind of alock: A read-write lock
O Two kinds of locking:
Oread lock -- | promiseto only read
awrite_lock -- | will modify data, need exclusive access
Oread lock: alowslocking if lock isread locked
oblocksif write lock held
Otypicaly blocksif thread waiting to write lock

owrite_lock: blocksuntil all locks (both read and write) are unlocked

Pthread reader-writer locks

O reader/writer lock initialization
int pthread rwlock _init(pthread rwlock t * lock, const pthread rwlockattr t * attr);
pthread rwlock tlock = PTHREAD RWLOCK INITIALIZER;

Oreader/writer lock destruction
int pthread rwlock_destroy(pthread_rwlock_t *lock);

Oreader/writer locks/unlock routines
int pthread_rwlock_rdlock(pthread_rwlock_t *lock);
int pthread rwlock _wrlock(pthread rwlock t *lock);
int pthread_rwlock_unlock(pthread_rwlock_t *lock);
int pthread rwlock _tryrdlock(pthread_rwlock t *lock);
int pthread _rwlock_trywrlock(pthread rwlock t *lock);
a0 return if OK, error number on failure

0O Read man pages for full information

Bounded Buffer Problem

o multiple "producers’, produce item, add it to shared queue
Omultiple "consumers’, grab an item from the shared queue and "consume it"

O shared queue has a shared size N
OHow does this get synchronized?

Semaphores

O A more robust tool
O Core implementation: A semaphore is an integer variable S with atomic operations

wait(S) { while (S<=0) /* wait */; S-; }

signa(S) { St++;}
O Original names by E.W. Dijkstrawere P() and V() ... proberen and verhogen
OKinds of semaphores. Binary (0,1) and Counting (0,1,2,3,...,n)
Olssue: busy waiting
O Can provide Mutex (e.g. binary semaphore is essentially a mutex)
O Can provide other synchronization solutions, wait for another process

t1. Si,; t2. wait(S);
signa(S); S2;

Semaphore implementations

O Issue of busy waiting ...
Olnstead of busy waiting, a process could block (give up the CPU)

O Consider the following implementation, each function "atomic"
typedef struct { int value; struct process *list; } semaphore;
void wait (semaphore *S)

{ S>vaue-;
if (S>vaue<0){
add processto S->ligt;
block()

}
}
void signal (semaphore *S)
{ S>valuet+;
if (S>vaue<=0){
remove a process P from S->list;
wakeup(P);
}
}

Solution of bounded buffer problem:

Queue of size N:
Semaphore empty = N, Semaphore full = 0, Semaphore mutex =1

producer:
while true

produce item
wait(&empty)
wait(& mutex)
Add item to Queue
signal (& mutex)
signal (&full)

Consumer:
while true

wait(&full)
wait(& mutex)
delete item from Queue
signal (& mutex)
signal (& empty)
consume item

| ssues with semaphores

PO PL
wait(S) wait(Q)
wait(Q) wait(S)

signdl(S) signa(Q)
signal(Q) signa(S)

O lssue?
ODeadlock ... PO gets Sand waitson Q, P1 gets Q and waitson S
O Easy to get with semaphores if not careful
O Programs have to be written correctly
O Programmers have to write correct synchronization code
OConsider:
wait(S);
... critical section ...
wait(S);
OTo help "fix" these issues, language designers have added constructs to languages

Monitors

O Monitors -- a object based synchronization construct
monitor name {
I/ shared variable definitions
function f1(args) {.... with access to shared vars and arguments only....
function f2(args) {..... with access to shared vars and arguments only....

initialization (_.) {...)
}

Ofunctions in the monitor al run with mutual exclusion

Oshared vars may be accessed only by functions in the monitor

O programmer does not need to code mutual exclusion

O needs something more for full synchronization, e.g. bounded buffer
O need to wait in amethod for some condition to be true

Odon’t want to block other threads from entering

Monitors (page 2)

condition variables -- "condition x;"
O Operations:

o x.wait() -- blocks the process in the monitor
ax.signal() -- restarts one process blocked
0 no blocked processes? no-op
O x.broadcast() -- restarts all processes blocked
O lssues:
Ocal to x.signal() -- who runs?
Ocaller waits
osignaled waits
a0 compromise for Concurrent Pascal: signaler must exit
OA number of languages have implemented monitors
O Path Pascal -- adlightly different approach
0 Object, functions, specification of order/number of operations
O path 1:(ab) , n:(ab) end
O 1:(ab) -- aand b need mutual exclusion

an:(ab) -- an amust run before b, at most n more as than bs

Condition variables and Pthreads

Pthreads have condition variables ... but monitors!
O Functions for condition variables in Pthreads

int pthread _cond_init(pthread_cond_t * restrict cond, const pthread condattr_t * restrict attr);
or declaration init: pthread_cond_t cond = PTHREAD_COND _INITIALIZER;
int pthread cond_destroy(pthread cond_t * cond);
int pthread cond_broadcast(pthread cond t * cond);
int pthread _cond_signal (pthread_cond t *cond); // May be implemented as broadcast!
int pthread_cond wait(pthread _cond t * restrict cond, pthread mutex_t * restrict mutex);
int pthread cond_timedwait(pthread cond t * restrict cond, pthread_mutex_t * restrict mutex,
const struct timespec * restrict abstime);
OUse?
OMust be used in conjunction with mutexes
pthread _mutex_lock(& mutex)
while (something requires us to wait) {
pthread_cond_wait (& condvar,& mutex);
}
critical section
pthread_mutex_unlock(& mutex)

Condition variables and Pthreads (page 2)

Owait code again
pthread mutex_lock(& mutex)
while (something requires us to wait) {
pthread_cond wait (& condvar,& mutex);

}

critical section

pthread_mutex_unlock(& mutex)
OWhile needed due to possibility signal isimplemented as broadcast

O Signal/Broadcast code
pthread_mutex_lock(& mutex)
critical section
pthread _cond_signal (& condvar)
pthread_mutex_unlock(& mutex)
Owant to signal and exit (like required for in some languages)
O Best implmentations
O "implement a monitor in C, mymonitor.h/.c"

O Other parts of program just call the functions

Dining philosophers -- another classic synchronization problem

0 5 philosophers
Ojobs: eat & think (over and over,)
Oseated at around table
Oone plate in front of each philosopher
Oone fork in between plates
O philosopher needs two forks to eat
OHow do you synchronize access to the forks?
Ostatus[5] -- THINKING, HUNGRY, EATING
o condition [p] -- to wait for all forks
o check_forks(p) -- if hungry(p) and +/- not eating then set statusto EATING, signal(p)
O pickupForks(p) -- monitor routine
Ostatus[p] = HUNGRY, check_forks(p), if status[p] != EATING, wait(p)
O putdownForks(p) -- another monitor routine
Ostatusg[p] = THINKING, check forks(-), check_forks(+)

Banking Example

O Customer Accounts and transactions (customer/account the thread)
O Deposits -- simple
a0 Check/Withdrawls -- simple
O Transfers --- ?
a0 Synchronize from and to accounts
0 Rendezvous
O Implemented as part of several languages, Adais one of them
O How to implement in Pthreads?

bool at_rendezous = false

mutex.lock;

if (at_rendezous) { at_rendezous = true; cv.wait; }
else{ at_rendezous = false; cv.signd); }

Critical region

mutex.unlock

Barriers -- multi-thread synchronization

All thread need to wait for slowest thread?
OUsea"barrier" -- al threads have to stop at same time until all are stopped

O Implementation with a condition variable (and mutex)?
O Pthread version:
int pthread barrier_init(pthread barrier t* restrict barrier, const pthread barrierattr _t * restrict attr,
unsigned int count);
a0 return -> successful
int pthread barrier_destroy(pthread barrier_t *barrier);
00 return -> successful
int pthread barrier_wait(pthread_barrier_t *barrier);
00 => successful for all but one, one gets PTHREAD BARRIER _SERIAL_THREAD
O "thread may be used to update shared data.”

Parallel version across multiple machines
O Issues of speed across a barrier -- as few barriers as possible!
O Tree -- across multiple machines/ or even on aGPU ...
O Sequential isBAD

Amdahl’s Law

O Sequential part of a problem dictates limit on speed up
Op -- fraction of work that can be parallelized

aT=(1-p)T +pT --total time
ONow add parallelization ...
Osisaspeed up factor on the parallel code

aT =(1-p)T + pT/s

Thread Control -- chapter 12

O Thread Attributes -- for use at thread creation time
int pthread_attr_init(pthread_attr_t * attr);
int pthread _attr_destroy(pthread attr_t * attr);

O Attributes you can get and set

pthread_attr_getdetachstate(3) thread detach state
pthread_attr getguardsize(3) thread guard size
pthread_attr_getinheritsched(3) inherit scheduler attribute
pthread_attr_getschedparam(3) thread scheduling parameter
pthread attr getschedpolicy(3) thread scheduling policy
pthread_attr_getscope(3) thread contention scope
pthread_attr_getstack(3) thread stack
pthread_attr_getstacksize(3) thread stack size
pthread_attr_getstackaddr(3) thread stack address

OMutex & read/write lock attributes

a control how locks work -- not covered here

Thread Control (page 2)

Reentrancy (akathread safe)

Omultiple threads can call same function at the same time
Oisit safeto doit?
oYes->thread safe!
OWhat would make it un-safe?
Oreturn a pointer to asingle static struct
O second call changes static struct
O System functions? Are they thread safe?
ONot all -- see Figure 12.9 -- not guaranteed to be thread safe
O Things like getpwent(), getgrgid()
O0How do you use them?
O critical section with mutexes()
OHow about your code? Can it be thread safe?

O How about access to errno?

Thread Control (page 3)

Thread specific data
Ocan't usethread ID and an array ...

Olocal variablesin thread_main() are "thread specific" but
O errno needs to have one variable per thread
0 (GCC did some compiler tricks ... but not portable)
Oldeaof a"key" -- for accessing the data
int pthread key create(pthread_key t *key, void (* destructor)(void *));
int pthread key delete(pthread key t key);
O Creates and destroys a key
0 Only want to do this once, not for every thread
int pthread_once(pthread_once _t *once_control, void (*init_routine)(void));
oalowsfirst thread to call init_routine and not others
OAccess to thread specific data:
void *pthread_getspecific(pthread key t key);
int pthread_setspecific(pthread key t key, const void *value);
O set first, then get. get before set gets NULL

Thread Control (page 4)

O Errno? no longer avariable but a define to call afunction

#define errno (*__errmo())
O Similar to windows GetL astError()!

Cancel Options
00 Can control how athread can be canceled -- read section 12.7

Final two issues. signals and forks

O Each thread has its own signal mask (pthread _sigmask())
Osigaction is still for the entire process

O Signals are delivered to asingle thread
O hardware issue -> delivered to thread that caused it

ONo thread caused the signal -> delivered to an arbitrary thread!

O Control can be had with the per thread signal mask and sigwait(2)
Oe.g. one thread can catch all the generic signals
O Note: read about Linux, signals and threads at the end of 12.8

Forking with threads:

O fork(2) - creates a new process with ONE thread running

O What about all the mutexes, r/w locks and cond variables?
Ofork()/exec() -> no problems ... memory image destroyed
Ofork() and continue execution

oDon’t use locks/threads ... no problem

O Start threads, using locks ... big problem!

alf you do this... read how to do it
O can use pthread atfork() to help clean up locks.

[/Oin threads
Oreads/writes -- use "file pointer”
O can interfere with each other
O Solution?
ssize t pread(int d, void *buf, size t nbytes, off t offset);
ssize t pwrite(int d, const void *buf, size t nbytes, off _t offset);

Assignment 6 -- computation speed-up

O concurrent running of threads, not just "round robin"
Ofaster computation due to concurrent running of threads

OMatrix Multiply
aDividing work up between threads
O does not need thread-to-thread syncronization

O does need barriersif multiple multiplies are done

