
 Threads (Chapter 11)

 Process -- Program, Memory (text, data, bss, heap, stack), execution
 stack - directly linked to execution

 function call frame, on the stack

 CPU -- execution "engine"

 Early computers: one CPU, memory ...

 Shared computing, multiple processes on one CPU

 Typical use: round robin, quantum

 Mid 1970s -- Big Iron (cray 1) down to microprocessors (intel 8080)

 Idea at that point: Elephant (one big CPU) vs army of ants (microprocessors)

 Parallel Computing -- army of ants, each ant ran "sequential"

 Now: One "box", multiple CPUs (10s/box), one big memory

 Possibility of having multiple execution points inside one process

 Concurrency -- multiple execution points inside one process

 But, not new, used in 1980 (and possibly earlier)

 At UW: simulate 4096 CPUs on a single CPU?

 Multiple threads of control in one process

 Multiple stacks (one for each thread of control)

 Round-robin the threads

 Concurrency, Parallel and Distributed

 What is the difference between these ideas?
 Nelson’s definitions -- may not be accepted industry wide, but ...

 Concurrency -- Multiple threads of control in a single process

 Parallel -- A collection of processes, running on a collection of CPUs, cooperating to solve a single problem. CPUs

geographically close (e.g same room or building.)

 Distributed -- A collection of CPUs, most likely geographically distributed, providing services for a variety of uses. e.g. google

 Note: Concurrency can be used without multiple CPUs. Parallel and Distributed can’t work on a single CPU.

 Concurrency can be very useful with a GUI, one thread per visual element.

 Threads -- concurrency mechanism

 Note: threads can be useful in the parallel and distributed processes.

 Early Threads:

 User space (OS didn’t know anything about them)

 Now:

 Thread packages, language features, OS support

 Basic Thread Ideas

 Single process, multiple threads (stack and execution)
 Can simplify code for asynchronous code (e.g. GUI)

 Threads can share global or heap memory. (Typically not stack)

 Process can share memory, but it is more difficult. (ch 15 & 17)

 With multiple CPUs available, "clock" time can be reduced.

 Interactive programs can "spawn CPU intensive tasks on a thread" and come back to user quickly.

 Threads are useful even on a uniprocessor.

 Simulation example

 GUI example

 Issue of blocked vs running threads

 With OS support, blocked threads don’t block other threads

 Thread consists of:

 stack (local variables in functions, call sequence)

 CPU registers (PC, status,)

 "Thread Local Storage" -- Global in the thread, Local to the thread

 errno -- two threads calling a system call at the same time

 Shares the rest of the process ... pid, CWD, files, heap, ...

 PThreads -- POSIX threads

 A thread library defined by the POSIX group (POSIX.1-2001)
 Various implementations have been done.

 Need a thread ID ... but may be a struct ... so

 int pthread_equal (pthread_t tid1, pthread_t tid2);

 compare two threads, return non-zero => equal, 0 is not equal

 pthread_t pthread_self(void);

 Gets the current thread id.

 Thread Creation

 Program after execxx() starts as a single thread program.

 Threaded program then starts threads

 int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

 void *(*start_routine) (void *), void *arg);

 thread -- pointer to a pthread_t variable

 attr -- May be NULL (more later)

 start_routine -- pointer to thread’s "main" function

 arg -- pointer passed to the start routine

 See pth-id.c: a program to print the "thread id"

 Thread Termination & Joining

 Any thread calling exit(3) or _exit(2) exits the process and kills all threads
 A default action signal that terminates will terminate the entire process

 Single thread "exit" terminates only calling thread

 void pthread_exit (void *rval_ptr)

 may return a pointer

 "start routine" can just return and return value is pthread_exit parameter

 "Joining a thread"

 Similar to a wait(), but for a thread

 int pthread_join(pthread_t thread, void **retval);

 Calling thread blocks if "thread" is still running

 After "thread" returns, calls pthread_exit() or is canceled, returns from join

 PTHREAD_CANCELED is a possible return value

 return value is 0 for success, non-zero is an error number

 EDEADLK - mutual joins or join calling thread

 EINVAL - thread already joined or process waiting to join

 ESRCH - no thread with that ID

 Do not return pointers to local variables ... "automatic variable mis-use"

 Joined thread reclaims the resources of the thread

 Other Calls

 int pthread_cancel(pthread_t thread);
 Causes thread to terminate as if it did pthread_exit(PTHREAD_CANCELED)

 void pthread_cleanup_push(void (*routine)(void *), void *arg);

 schedules a thread to be run at pthread_exit or pthread_cancel time

 adds "routine" to a stack of routines for the calling thread

 void pthread_cleanup_pop(int execute);

 pops the top routine off the thread’s cleanup stack, not run if execute is 0

 int pthread_detach(pthread_t thread);

 sets the thread to be "un-joinable" and automatically reclaims resources at thread exit

 pthread_join() on this thread will return an error

 Thread Synchronization

 Race conditions happen even easier in threads
 Consider pth-race.c

 What happens?

 Why does that happen?

 What about "read only" variables?

 How can you fix it?

 Critical section -- section of code that must happen "atomically" -- no interruption of the process

 Software -- Peterson’s solution

 Turn based approach -- but works only for two threads

 Hardware assist approaches:

 Mutex -- Mutual Exclusion

 int mutex = 0;

 while (test_and_set(&mutex) == 1) /* spin */;

 critical-section;

 mutex = 0;

 Problem -- busy wait.

 Solution -- have the OS block the thread until it can enter the critical section.

 Mutex -- solution for mutual access to a shared variable

 Mutex -- a lock to block access to a critical section
 one thread in the critical section at a time

 all access to shared variable covered by a mutex

 Pthreads -- need to initialize it:

 int pthread_mutex_init(pthread_mutex_t * mutex, const pthread_mutexattr_t * attr);

 pthread_mutexattr_t * may be NULL for standard attributes

 When done, the mutex may be destroyed

 int pthread_mutex_destroy(pthread_mutex_t *mutex);

 no need to destroy if calling exit

 Entry to critical section -- lock, block if held

 int pthread_mutex_lock(pthread_mutex_t *mutex);

 return value 0 if successful, should check

 Non-blocking try to lock

 int pthread_mutex_trylock(pthread_mutex_t *mutex);

 Error if locked, errno is EBUSY

 Exit to critical section -- unlock and let others in

 int pthread_mutex_unlock(pthread_mutex_t *mutex);

 Mutex (page 2)

 Static initialization of a mutex
 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

 Typical code outline:

 if (pthread_mutex_lock(&mutexvar)) {

 /* Error condition */

 } else {

 /* critical section */

 if (pthread_mutex_unlock(&mtexvar)) {

 /* error condition */

 }

 }

 Critical section should be

 as short as possible

 have no loops unless absolutely necessary

 never block in the critical section

 See pth-mutex.c

 Mutex issues

 Deadlock -- circular waiting
 ush: child blocked writing to pipe, parent waiting on child

 mutex: tries to lock a mutex already held

 multiple mutexes:

 A holds M1, tries for M2 (blocked)

 B holds M2, tries for M1 (blocked)

 longer chains of holding and waiting with circular wait are possible

 Avoid deadlocks with a mutex lock ordering

 can’t order? Use pthread_mutex_trylock and don’t block

 Problem: Readers and Writers

 Shared Data Structure ... e.g. Balanced Binary Tree
 Reader threads -- doing lookups in the tree

 Writer threads -- doing inserts into the tree

 Problems?

 race without mutex protection

 problem here?

 two readers can share at the same time with no race

 writers need exclusive access, can’t share with readers

 Solution?

 A new kind of a lock: A read-write lock

 Two kinds of locking:

 read_lock -- I promise to only read

 write_lock -- I will modify data, need exclusive access

 read_lock: allows locking if lock is read locked

 blocks if write lock held

 typically blocks if thread waiting to write lock

 write_lock: blocks until all locks (both read and write) are unlocked

 Pthread reader-writer locks

 reader/writer lock initialization
 int pthread_rwlock_init(pthread_rwlock_t * lock, const pthread_rwlockattr_t * attr);
 pthread_rwlock_t lock = PTHREAD_RWLOCK_INITIALIZER;

 reader/writer lock destruction

 int pthread_rwlock_destroy(pthread_rwlock_t *lock);

 reader/writer locks/unlock routines

 int pthread_rwlock_rdlock(pthread_rwlock_t *lock);

 int pthread_rwlock_wrlock(pthread_rwlock_t *lock);

 int pthread_rwlock_unlock(pthread_rwlock_t *lock);

 int pthread_rwlock_tryrdlock(pthread_rwlock_t *lock);

 int pthread_rwlock_trywrlock(pthread_rwlock_t *lock);

 0 return if OK, error number on failure

 Read man pages for full information

 Bounded Buffer Problem

 multiple "producers", produce item, add it to shared queue
 multiple "consumers", grab an item from the shared queue and "consume it"

 shared queue has a shared size N

 How does this get synchronized?

 Semaphores

 A more robust tool

 Core implementation: A semaphore is an integer variable S with atomic operations

 wait(S) { while (S <= 0) /* wait */; S--; }

 signal(S) { S++; }

 Original names by E.W. Dijkstra were P() and V() ... proberen and verhogen

 Kinds of semaphores: Binary (0,1) and Counting (0,1,2,3,...,n)

 Issue: busy waiting

 Can provide Mutex (e.g. binary semaphore is essentially a mutex)

 Can provide other synchronization solutions, wait for another process

 t1: S1; t2: wait(S);

 signal(S); S2;

 Semaphore implementations

 Issue of busy waiting ...
 Instead of busy waiting, a process could block (give up the CPU)

 Consider the following implementation, each function "atomic"

 typedef struct { int value; struct process *list; } semaphore;

 void wait (semaphore *S)

 { S->value--;

 if (S->value < 0) {

 add process to S->list;

 block()

 }

 }

 void signal (semaphore *S)

 { S->value++;

 if (S->value <= 0) {

 remove a process P from S->list;

 wakeup(P);

 }

 }

 Solution of bounded buffer problem:

 Queue of size N:
 Semaphore empty = N, Semaphore full = 0, Semaphore mutex = 1

 producer:
 while true
 produce item
 wait(&empty)
 wait(&mutex)
 Add item to Queue
 signal(&mutex)
 signal(&full)

 Consumer:
 while true
 wait(&full)
 wait(&mutex)
 delete item from Queue
 signal(&mutex)
 signal(&empty)
 consume item

 Issues with semaphores

 P0 P1
 wait(S) wait(Q)
 wait(Q) wait(S)
 ...
 signal(S) signal(Q)
 signal(Q) signal(S)

 Issue?

 Deadlock ... P0 gets S and waits on Q, P1 gets Q and waits on S

 Easy to get with semaphores if not careful

 Programs have to be written correctly

 Programmers have to write correct synchronization code

 Consider:

 wait(S);

 ... critical section ...

 wait(S);

 To help "fix" these issues, language designers have added constructs to languages

 Monitors

 Monitors -- a object based synchronization construct
 monitor name {
 // shared variable definitions
 function f1(args) {.... with access to shared vars and arguments only.... }
 function f2(args) {.... with access to shared vars and arguments only.... }
 ...
 initialization (...) {....}
 }

 functions in the monitor all run with mutual exclusion

 shared vars may be accessed only by functions in the monitor

 programmer does not need to code mutual exclusion

 needs something more for full synchronization, e.g. bounded buffer

 need to wait in a method for some condition to be true

 don’t want to block other threads from entering

 Monitors (page 2)

 condition variables -- "condition x;"
 Operations:

 x.wait() -- blocks the process in the monitor

 x.signal() -- restarts one process blocked

 no blocked processes? no-op

 x.broadcast() -- restarts all processes blocked

 Issues:

 call to x.signal() -- who runs?

 caller waits

 signaled waits

 compromise for Concurrent Pascal: signaler must exit

 A number of languages have implemented monitors

 Path Pascal -- a slightly different approach

 Object, functions, specification of order/number of operations

 path 1:(a,b) , n:(a;b) end

 1:(a,b) -- a and b need mutual exclusion

 n:(a;b) -- an a must run before b, at most n more as than bs

 Condition variables and Pthreads

 Pthreads have condition variables ... but monitors!
 Functions for condition variables in Pthreads

 int pthread_cond_init(pthread_cond_t * restrict cond, const pthread_condattr_t * restrict attr);

 or declaration init: pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

 int pthread_cond_destroy(pthread_cond_t *cond);

 int pthread_cond_broadcast(pthread_cond_t *cond);

 int pthread_cond_signal(pthread_cond_t *cond); // May be implemented as broadcast!

 int pthread_cond_wait(pthread_cond_t * restrict cond, pthread_mutex_t * restrict mutex);

 int pthread_cond_timedwait(pthread_cond_t * restrict cond, pthread_mutex_t * restrict mutex,

 const struct timespec * restrict abstime);

 Use?

 Must be used in conjunction with mutexes

 pthread_mutex_lock(&mutex)

 while (something requires us to wait) {

 pthread_cond_wait (&condvar,&mutex);

 }

 critical section

 pthread_mutex_unlock(&mutex)

 Condition variables and Pthreads (page 2)

 wait code again
 pthread_mutex_lock(&mutex)
 while (something requires us to wait) {
 pthread_cond_wait (&condvar,&mutex);
 }
 critical section
 pthread_mutex_unlock(&mutex)
 While needed due to possibility signal is implemented as broadcast

 Signal/Broadcast code

 pthread_mutex_lock(&mutex)

 critical section

 pthread_cond_signal(&condvar)

 pthread_mutex_unlock(&mutex)

 want to signal and exit (like required for in some languages)

 Best implmentations

 "implement a monitor in C, mymonitor.h/.c"

 Other parts of program just call the functions

 Dining philosophers -- another classic synchronization problem

 5 philosophers
 jobs: eat & think (over and over,)

 seated at a round table

 one plate in front of each philosopher

 one fork in between plates

 philosopher needs two forks to eat

 How do you synchronize access to the forks?

 status [5] -- THINKING, HUNGRY, EATING

 condition [p] -- to wait for all forks

 check_forks(p) -- if hungry(p) and +/- not eating then set status to EATING, signal(p)

 pickupForks(p) -- monitor routine

 status[p] = HUNGRY, check_forks(p), if status[p] != EATING, wait(p)

 putdownForks(p) -- another monitor routine

 status[p] = THINKING, check_forks(-), check_forks(+)

 Banking Example

 Customer Accounts and transactions (customer/account the thread)
 Deposits -- simple

 Check/Withdrawls -- simple

 Transfers --- ?

 Synchronize from and to accounts

 Rendezvous

 Implemented as part of several languages, Ada is one of them

 How to implement in Pthreads?

 bool at_rendezous = false

 ...

 mutex.lock;

 if (!at_rendezous) { at_rendezous = true; cv.wait; }

 else { at_rendezous = false; cv.signal); }

 Critical region

 mutex.unlock

 Barriers -- multi-thread synchronization

 All thread need to wait for slowest thread?
 Use a "barrier" -- all threads have to stop at same time until all are stopped

 Implementation with a condition variable (and mutex)?

 Pthread version:

 int pthread_barrier_init(pthread_barrier_t * restrict barrier, const pthread_barrierattr_t * restrict attr,

 unsigned int count);

 0 return -> successful

 int pthread_barrier_destroy(pthread_barrier_t *barrier);

 0 return -> successful

 int pthread_barrier_wait(pthread_barrier_t *barrier);

 0 => successful for all but one, one gets PTHREAD_BARRIER_SERIAL_THREAD

 "thread may be used to update shared data."

 Parallel version across multiple machines

 Issues of speed across a barrier -- as few barriers as possible!

 Tree -- across multiple machines / or even on a GPU ...

 Sequential is BAD

 Amdahl’s Law

 Sequential part of a problem dictates limit on speed up
 p -- fraction of work that can be parallelized

 T = (1-p)T + pT -- total time

 Now add parallelization ...

 s is a speed up factor on the parallel code

 T’ = (1-p)T + pT/s

 Thread Control -- chapter 12

 Thread Attributes -- for use at thread creation time
 int pthread_attr_init(pthread_attr_t *attr);
 int pthread_attr_destroy(pthread_attr_t *attr);
 Attributes you can get and set

 pthread_attr_getdetachstate(3) thread detach state

 pthread_attr_getguardsize(3) thread guard size

 pthread_attr_getinheritsched(3) inherit scheduler attribute

 pthread_attr_getschedparam(3) thread scheduling parameter

 pthread_attr_getschedpolicy(3) thread scheduling policy

 pthread_attr_getscope(3) thread contention scope

 pthread_attr_getstack(3) thread stack

 pthread_attr_getstacksize(3) thread stack size

 pthread_attr_getstackaddr(3) thread stack address

 Mutex & read/write lock attributes

 control how locks work -- not covered here

 Thread Control (page 2)

 Reentrancy (aka thread safe)
 multiple threads can call same function at the same time

 is it safe to do it?

 Yes -> thread safe!

 What would make it un-safe?

 return a pointer to a single static struct

 second call changes static struct

 System functions? Are they thread safe?

 Not all -- see Figure 12.9 -- not guaranteed to be thread safe

 Things like getpwent(), getgrgid()

 How do you use them?

 critical section with mutexes()

 How about your code? Can it be thread safe?

 How about access to errno?

 Thread Control (page 3)

 Thread specific data
 can’t use thread ID and an array ...

 local variables in thread_main() are "thread specific" but

 errno needs to have one variable per thread

 (GCC did some compiler tricks ... but not portable)

 Idea of a "key" -- for accessing the data

 int pthread_key_create(pthread_key_t *key, void (*destructor)(void *));

 int pthread_key_delete(pthread_key_t key);

 Creates and destroys a key

 Only want to do this once, not for every thread

 int pthread_once(pthread_once_t *once_control, void (*init_routine)(void));	

 allows first thread to call init_routine and not others

 Access to thread specific data:

 void *pthread_getspecific(pthread_key_t key);

 int pthread_setspecific(pthread_key_t key, const void *value);

 set first, then get. get before set gets NULL

 Thread Control (page 4)

 Errno? no longer a variable but a define to call a function
 #define errno (*__errno())
 Similar to windows GetLastError()!

 Cancel Options

 Can control how a thread can be canceled -- read section 12.7

 Final two issues: signals and forks

 Each thread has its own signal mask (pthread_sigmask())

 sigaction is still for the entire process

 Signals are delivered to a single thread

 hardware issue -> delivered to thread that caused it

 No thread caused the signal -> delivered to an arbitrary thread!

 Control can be had with the per thread signal mask and sigwait(2)	

 e.g. one thread can catch all the generic signals

 Note: read about Linux, signals and threads at the end of 12.8

 Forking with threads:

 fork(2) - creates a new process with ONE thread running
 What about all the mutexes, r/w locks and cond variables?

 fork()/exec() -> no problems ... memory image destroyed

 fork() and continue execution

 Don’t use locks/threads ... no problem

 Start threads, using locks ... big problem!

 If you do this ... read how to do it

 can use pthread_atfork() to help clean up locks.

 I/O in threads

 reads/writes -- use "file pointer"

 can interfere with each other

 Solution?

 ssize_t pread(int d, void *buf, size_t nbytes, off_t offset);

 ssize_t pwrite(int d, const void *buf, size_t nbytes, off_t offset);

 Assignment 6 -- computation speed-up

 concurrent running of threads, not just "round robin"
 faster computation due to concurrent running of threads

 Matrix Multiply

 Dividing work up between threads

 does not need thread-to-thread syncronization

 does need barriers if multiple multiplies are done

