Signals (Chapter 10)

Software Interrupts
"Most nontrivial application programs need to deal with signals’
asyncronous events

Version 7 signals-- Not reliable
Signal could "get lost"

BSD -- changesfor reliable signals
Changes were incompatible

POSIX -- aso their concept of signals




Signal Basics

Signal Names:
OSIGINT - interrupt program

OSIGSEGV - segmentation violation
OSIGTSTP - stop signa from terminal
O SIGCHLD - child status has changed
Oman 7 signa

Signal causes.
OTerminal generated
o/C - often SIGINT

a~Z - often SIGTSTP

OHarware generated
o Divide by zero - SIGFPE (example divzero.c)
O Bad pointer ref - SIGSEGV
O Unaligned access - SIGBUS (example buserr.c)




Signal Basics (page 2)

More Signal causes.
akill system call

aint kill(pid_t pid, int sig);
Opid >0 =>to that process
Opid =0 =>to process group of sender
Opid = -1 => All processes (except sender)
aroot -> all but system processes
alroot -> all with same uid
aroot can signal any process

a!root can only signal process with same uid

Okill user level command
0 Sometimes built into shells (bash)
O Same as above




Signal Basics (page 3)

More Signal causes.

Other indications
OSIGURG -- Network related

O SIGPIPE -- Write to a pipe with no reader
OSIGALRM -- "Alarm Clock™" went off
OSIGCHLD -- Child change of status




What happens at "signal time"?

Signal gets "Delivered" to the process

Actions...
O lgnore the signal -- nothings happens

a(Can'tignore SIGKILL and SIGSTOP)
O Catch the signal

O Starts a designated function

O (Can’t catch SIGKILL and SIGSTOP)
O Default action

OMay ignore it

O0May terminate the process

O0May dump core and terminate process

Again ... look at "man 7 signal”




How to use:

Simple version (unreliable):
void (*signal(int sig, void (*func)(int));)(int)

Ofunc -> function name OR
oSIG_DFL
oSIG_IGN
dsig -> Signa Name
Oreturn -> previous function pointer (or SIG_DFL or SIG_IGN)

Example: sig.c




Other i1ssues:

system calls may be interrupted by signals
EINTR isan error code for an interrupted system call

Other signal related calls
Oraise(3)
Oaarm(3) / setitimer(2)
O pause(3) / sigsuspend(2)
O abort(3)

Use of system callsin handler!
OSave errno at least!
ODon't use routines like malloc!
O How about printf?

O Not agood ideal




"Advanced" signal interface

#include <signal.h>

struct sigaction {
void (*sa_handler)(int);
sigset_t sa mask;
int saflags, };

int sigaction(int sig, const struct sigaction * act,
struct sigaction * oact);
Osa mask -- a"set" of signalsto "block" during handler running.

0 Routines to make signal sets:
O sigemptyset, sigfillset, sigaddset, sigdel set, sigismember
Osa flags-- Controls other things
O0SA_RESTART -- restart system calls that can be restarted
O Others ... not that important here




"Advanced" signal interface (page 2)

Example: sigaction.c

int sigprocmask(int how, const sigset t *set, sigset_t * oset);
O Block/unblock the current set of signals from being delivered.

int sigpending(sigset_t * set);
O Returns set of signals waiting (blocked) to be delivered

int sigsuspend(const sigset_t *sigmask);
OWait for asignal to be delivered. sigmask normally empty.

sigsetjmp / siglongjmp
O setjmp and longjmp that deals with signals.




Signal Set operations

From "man sigsetops"
#include <signal .h>
int sigemptyset(sigset_t * set);
int sigfillset(sigset_t * set);
int sigaddset(sigset_t *set, int Signo);
int sigdelset(sigset_t *set, int signo);

int sigismember(sigset_t *set, int Signo);







