
 Signals (Chapter 10)

 Software Interrupts

 "Most nontrivial application programs need to deal with signals"

 asyncronous events

 Version 7 signals -- Not reliable
 Signal could "get lost"

 BSD -- changes for reliable signals
 Changes were incompatible

 POSIX -- also their concept of signals

 Signal Basics

 Signal Names:
 SIGINT - interrupt program

 SIGSEGV - segmentation violation

 SIGTSTP - stop signal from terminal

 SIGCHLD - child status has changed

 man 7 signal

 Signal causes:

 Terminal generated

 ^C - often SIGINT

 ^Z - often SIGTSTP

 Harware generated

 Divide by zero - SIGFPE (example divzero.c)

 Bad pointer ref - SIGSEGV

 Unaligned access - SIGBUS (example buserr.c)

 Signal Basics (page 2)

 More Signal causes:
 kill system call

 int kill(pid_t pid, int sig);

 pid > 0 => to that process

 pid = 0 => to process group of sender

 pid = -1 => All processes (except sender)

 root -> all but system processes

 !root -> all with same uid

 root can signal any process

 !root can only signal process with same uid

 kill user level command

 Sometimes built into shells (bash)

 Same as above

 Signal Basics (page 3)

 More Signal causes:

 Other indications
 SIGURG -- Network related

 SIGPIPE -- Write to a pipe with no reader

 SIGALRM -- "Alarm Clock" went off

 SIGCHLD -- Child change of status

 What happens at "signal time"?

 Signal gets "Delivered" to the process
 Actions ...
 Ignore the signal -- nothings happens

 (Can’t ignore SIGKILL and SIGSTOP)

 Catch the signal

 Starts a designated function

 (Can’t catch SIGKILL and SIGSTOP)

 Default action

 May ignore it

 May terminate the process

 May dump core and terminate process

 Again ... look at "man 7 signal"

 How to use:

 Simple version (unreliable):

 void (*signal(int sig, void (*func)(int));)(int)

 func -> function name OR

 SIG_DFL

 SIG_IGN

 sig -> Signal Name

 return -> previous function pointer (or SIG_DFL or SIG_IGN)

 Example: sig.c

 Other issues:

 system calls may be interrupted by signals
 EINTR is an error code for an interrupted system call

 Other signal related calls
 raise(3)

 alarm(3) / setitimer(2)

 pause(3) / sigsuspend(2)

 abort(3)

 Use of system calls in handler!

 Save errno at least!

 Don’t use routines like malloc!

 How about printf?

 Not a good idea!

 "Advanced" signal interface

 #include <signal.h>
 struct sigaction {
 void (*sa_handler)(int);
 sigset_t sa_mask;
 int sa_flags; };

 int sigaction(int sig, const struct sigaction *act,
 struct sigaction *oact);
 sa_mask -- a "set" of signals to "block" during handler running.

 Routines to make signal sets:

 sigemptyset, sigfillset, sigaddset, sigdelset, sigismember

 sa_flags -- Controls other things

 SA_RESTART -- restart system calls that can be restarted

 Others ... not that important here

 "Advanced" signal interface (page 2)

 Example: sigaction.c

 int sigprocmask(int how, const sigset_t *set, sigset_t *oset);
 Block/unblock the current set of signals from being delivered.

 int sigpending(sigset_t *set);

 Returns set of signals waiting (blocked) to be delivered

 int sigsuspend(const sigset_t *sigmask);

 Wait for a signal to be delivered. sigmask normally empty.

 sigsetjmp / siglongjmp

 setjmp and longjmp that deals with signals.

 Signal Set operations

 From "man sigsetops"

 #include <signal.h>

 int sigemptyset(sigset_t *set);

 int sigfillset(sigset_t *set);

 int sigaddset(sigset_t *set, int signo);

 int sigdelset(sigset_t *set, int signo);

 int sigismember(sigset_t *set, int signo);

