
 Signals (Chapter 10)
 

 Software Interrupts
 

 "Most nontrivial application programs need to deal with signals"
 

 asyncronous events
 

 Version 7 signals -- Not reliable
      Signal could "get lost"
 

 BSD -- changes for reliable signals
      Changes were incompatible
 

 POSIX -- also their concept of signals
 



 Signal Basics
 

 Signal Names:
  SIGINT - interrupt program

  SIGSEGV - segmentation violation

  SIGTSTP - stop signal from terminal

  SIGCHLD - child status has changed 

  man 7 signal
 

 Signal causes:

  Terminal generated

    ^C - often SIGINT

    ^Z - often SIGTSTP
 

  Harware generated

    Divide by zero - SIGFPE  (example divzero.c)

    Bad pointer ref - SIGSEGV

    Unaligned access - SIGBUS (example buserr.c)
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 More Signal causes:
  kill system call

    int kill(pid_t pid, int sig);

    pid > 0  => to that process  

    pid = 0  => to process group of sender

    pid = -1 => All processes (except sender)

      root -> all but system processes

      !root -> all with same uid

    root can signal any process

    !root can only signal process with same uid
 

  kill user level command

    Sometimes built into shells (bash)

    Same as above
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 More Signal causes:
 

 Other indications
  SIGURG  -- Network related

  SIGPIPE -- Write to a pipe with no reader

  SIGALRM -- "Alarm Clock" went off

  SIGCHLD -- Child change of status
 



 What happens at "signal time"?
 

 Signal gets "Delivered" to the process
 Actions ...
  Ignore the signal -- nothings happens

    (Can’t ignore SIGKILL and SIGSTOP) 

  Catch the signal

    Starts a designated function

    (Can’t catch SIGKILL and SIGSTOP)

  Default action

    May ignore it

    May terminate the process

    May dump core and terminate process
 

 Again ... look at "man 7 signal"



 How to use:
 

 Simple version (unreliable):
 

   void (*signal(int sig, void (*func)(int));)(int)
 

  func -> function name  OR

    SIG_DFL

    SIG_IGN

  sig -> Signal Name

  return -> previous function pointer (or SIG_DFL or SIG_IGN)
 

 

 Example:  sig.c
 



 Other issues:
 

 system calls may be interrupted by signals
 EINTR is an error code for an interrupted system call
 

 Other signal related calls
  raise(3)

  alarm(3) / setitimer(2)

  pause(3) / sigsuspend(2)

  abort(3)
 

 Use of system calls in handler!

  Save errno at least!

  Don’t use routines like malloc!

  How about printf?

    Not a good idea!



 "Advanced" signal interface
 

      #include <signal.h>
      struct sigaction {
              void     (*sa_handler)(int);
              sigset_t sa_mask;
              int      sa_flags;       };
 

      int sigaction(int sig, const struct sigaction *act,
                    struct sigaction *oact);
  sa_mask -- a "set" of signals to "block" during handler running.

    Routines to make signal sets:

      sigemptyset, sigfillset, sigaddset, sigdelset, sigismember

  sa_flags -- Controls other things

    SA_RESTART -- restart system calls that can be restarted

    Others ... not that important here



 "Advanced" signal interface (page 2)
 

 Example: sigaction.c
 

 int sigprocmask(int how, const sigset_t *set, sigset_t *oset);
  Block/unblock the current set of signals from being delivered.
 

 int  sigpending(sigset_t *set);

  Returns set of signals waiting (blocked) to be delivered
 

 int sigsuspend(const sigset_t *sigmask);

  Wait for a signal to be delivered.  sigmask normally empty.
 

 sigsetjmp / siglongjmp

  setjmp and longjmp that deals with signals.
 



 Signal Set operations
 

 From "man sigsetops"
 

      #include <signal.h>
 

      int sigemptyset(sigset_t *set);
 

      int sigfillset(sigset_t *set);
 

      int sigaddset(sigset_t *set, int signo);
 

      int sigdelset(sigset_t *set, int signo);
 

      int sigismember(sigset_t *set, int signo);
 




