
 Process Relationships (Chapter 9)

 Review:
 Every process has a parent

 Parent notified when child terminates

 Parent gets child’s exit status via wait*

 Parent dies before child, child inherited by process 1

 History:

 1970 ... central computers accessed by terminals

 Logins were via terminals real terminals

 Terminals not seen in quite a while (in most places)

 How Logins were processed:

 init (using /etc/ttys) -> fork and exec getty
 getty gets user name -> execs login

 login verifies password -> execs login shell

 User uses login shell

 Other Login Methods

 Using an X display

 User logins in via getty/login, then runs startx

 xdm -- reads username & passwd, starts X as that user

 Somewhat like a startx without the login shell

 Can start a "terminal" (or shell) window

 Network

 User connects to machine via telnetd, inetd or sshd
 telnetd/inetd/sshd -> fork/exec login -> exec shell

 Shell

 In all cases "thinks" it is connected to a terminal

 xterm window driver <-> shell, network <-> shell

 fd’s 0, 1 and 2 set up for shell

 Real terminals

 Pseudo terminals

 Process Group

 Each process belongs to a process group.
 Primary purpose ... signals
 Secondary purpose ... terminal Read
 Every "terminal" has a "foreground" process group.

 That process group is the only process group allowed to read.

 Most shells make each command line a different process group.

 Example: foregd.c

 System calls:

 pid_t getpgrp(void);

 pid_t getpgid(pid_t pid);

 Setting up a process group

 System calls:
 int setpgid(pid_t pid, pid_t pgrp);

 int setpgrp(pid_t pid, pid_t pgrp); /* Old BSD */

 Typical use: Shell sets pgrp for a child before doing exec.

 ls

 ls | sort

 grep xyz myfile | sort | uniq | cut -c3-25

 Sessions

 Session is a collection of one or more process groups.
 Session leader ... typically a shell
 pid_t setsid(void);
 new session -- session leader

 new process group -- process group

 no controlling terminal

 error if calling process is a process group leader

 Controlling Terminal (CT)

 Session has a single CT (real or pseudo)
 Session leader may establish a CT

 Session leader is controlling process

 Session may have many process groups

 If session has controlling terminal, then

 single foreground process group

 0 or more background processes group

 "Keyboard" generated signals go to the foreground process group

 /dev/tty is CT

 pid_t tcgetpgrp(int fd); Get PGID of foreground process for fd

 int tcsetpgrp(int fd, pid_t pgrp_id); Set PGID for fd

 Signals

 SIGTTIN - background read attempted on CT

 SIGTTOU - background write attempted on CT

 Job Control

 BSD addition in 1980
 Job: cmd &

 Don’t wait!

 Originally:

 Job

 Interactive

 Can’t "switch" between jobs

 Job Control -- "attach" different jobs to CT

 Work done by shell (session leader)

 ^Z -- SIGTSTP

 Built-in commands:

 jobs

 fg

 bg

 I/O from background

 Controlling terminal as stdin (0)
 Read:
 Need input from CT

 SIGTTIN -- stops jobs (if not caught)

 Shell restarts job by connecting CT

 tcsetpgrp(), SIGCONT

 example: cat >file &

 Write:

 Depends on settings:

 BSD -- normally lets output to CT

 stty tostop

 Send SIGTTO, stop process

 stty -tostop

 Allows bg writes to CT

 Pipelines And Job Control!

 Want entire pipeline as a single process group.
 ps aux | grep dhcli | grep -v grep | cut -c5-10

 fork a process to do entire pipeline and be group leader

 sh -> fork -> sh1

 sh1 -> fork -> exec ps

 -> fork -> exec grep

 -> fork -> exec grep

 -> exec cut

 OR

 -> fork -> exec cut

 -> wait for all children

