
 Chapter 8: Process Control

 fork(2): create a new process

 exit(3): exit a process

 Waiting:
 pid_t wait(int *status);
 pid_t waitpid(pid_t wpid, int *status, int options);
 #include <sys/resource.h>
 pid_t wait3(int *status, int options, struct rusage *rusage);
 pid_t wait4(pid_t wpid, int *status, int options, struct rusage *rusage);

 zombie process -- exited & not waited on
 (example: zombie.c)

 How to "kill" the zombies?
 Wait on them!

 Killing Zombies (e.g. waiting!)

 pid_t waitpid(pid_t wpid, int *status, int options);

 wpid
 -1 waits for any child process.

 0 waits for any child process in the process group of the

 caller.

 >0 waits for the process with process id wpid.

 <-1 waits for any process whose process group id equals the

 absolute value of wpid.

 status
 exit value, other information about exit status.

 see man page

 options
 WNOHANG -- This option is used to indicate that the call

 should not block if there are no stopped or exited children.

 wait*() call returns 0 if no stopped or exited children.

 Exit Status ... macros

 WIFEXITED(status)
 true if process called _exit(2) or exit(3)

 WEXITSTATUS(status)

 The low-order 8 bits of the argument passed to _exit(2)

 WIFSIGNALED(status)

 True if the process terminated due to receipt of a signal.

 WTERMSIG(status)

 The number of the signal that caused the termination.

 WCOREDUMP(status)

 True if a core file was created.

 WIFSTOPPED(status)

 True if the process has not terminated, but has stopped and can be restarted.

 WSTOPSIG(status)

 Number of signal that stopped process.

 Race Conditions

 Multiple processes working together
 Results depend on the order of the processes running.

 (Example race.c)

 Example -- character at a time output

 Accessing a file, "lock file"

 More on the exec functions

 System Call:
 int execve (char *path, char * argv[], char * envp[]);

 Library Calls:

 int execl (char *path, char *arg, ...);

 int execlp (char *file, char *arg, ...);

 int execle (char *path, char *arg, ..., char *envp[]);

 int execv(char *path, char *argv[]);

 int execvp(char *file, char *argv[]);

 Use:

 *p -- search the path for the file named

 others require full file path.

 Example program exec.c

 Exec functions (page 2)

 Things that remain the same across an exec
 process ID (pid), parent process ID (ppid)

 real user ID (uid), real group ID (gid)

 supplementary groups IDs

 process group ID

 session ID

 controlling terminal

 time left until alarm clock

 current working directory

 file mode creation mask (umask)

 file locks

 process signal mask

 pending signals

 resource limits

 time accounting values

 Exec functions (page 3)

 Open files:
 file will remain open unless set to close.

 r = fcntl (fd, F_SETFD, FD_CLOEXEC);

 Changing User IDs

 Kinds of UIDs
 real user ID

 effective user ID (set by exec if setuid bit is set)

 saved set-user-ID (set by exec if setuid bit is set)

 int setuid(uid_t newuid);

 POSIX (and Linux)

 effective uid == 0 => sets all three

 real uid == newuid => sets effective uid

 saved uid == newuid => sets effective uid

 otherwise error

 BSD (NetBSD)

 effective uid == 0 => sets all three

 real uid == newuid => sets all three

 otherwise error

 Changing User IDs (page 2)

 int seteuid(uid_t euid);
 POSIX -- no such call

 BSD (NetBSD)

 set effective to either real or saved UID

 int setgid(gid_t gid);

 int setegid(gid_t egid);

 Same rules for these.

 Use?

 Interpretor files

 Script files can be run directly from command line

 #!name [opt parameter]
 contents

 Uses:
 shells

 perl

 python

