
 Make -- a command generator program

 Input: a description file, normally called "Makefile"
 (Also called "makefile" or by flags "-f filename".)

 Output: a series of commands to a shell

 A Simple Makefile:

 # This is an example makefile
 FILES = f1 f2 f3
 result: f1 f2 f3
 cat f1 f3 f3 > result
 clean:
 rm -f result

 Parts of make files

 comment lines: start with #

 make variables: NAME=value
 (aka macros)

 targets: "result", "clean"

 dependencies: f1 f2 f3

 description line:
 <tab>command

 Make and Makefiles

 To see tabs and "End of Lines":
 % cat -e -t -v Makefile

 To run make

 % make

 % make target-name

 % make clean

 Example ex1 here

 Targets and Descriptions

 Target: something to be made
 May be a file name to be made (myprog)

 May not make a file by that name (all)

 Dependency or prerequisite

 if any dependency is newer than target -> make

 may use variables here ($(name))

 Example ex2 here

 something to be made before the target

 Example ex3 here

 $@ -- special builtin variable -- target name

 Compiling C files

 # This is yet another makefile example!
 #

 hello: hello.o
 gcc -g -o hello hello.o

 hello.o: hello.c
 gcc -g -c hello.c

 clean:
 rm -r hello hello.o

 Example ex4

 Example ex5 -- Multiple C files
 Extra dependency list

 Predefined Rules

 # This is yet another makefile example!

 CC=gcc
 CFLAGS= -g -Wall

 hello: hello.o bye.o
 gcc -g -o hello hello.o bye.o

 clean:
 rm -r hello hello.o bye.o

 # dependency list
 hello.o bye.o: bye.h

 Macros: CC, CFLAGS
 No rules for "hello.o" and "bye.o"
 Example ex6

 More Macros

 Builtin Macros
 $@ -- current target

 $? -- newer prerequisite list

 Macro substituion

 SRCS = a.c b.c

 OBJS = ${SRCS:.c=.o}

 Multiple targets

 a b c : d e f

 a.o b.o c.o: defs.h

 Example ex7

 Suffix Rules

 Suffix: file.c => .c
 Others: .o .cxx .b .p ...

 How to turn a .c file into a .o file?

 .SUFFIXES: .c .o .cxx

 .c.o:; $(CC) $(CFLAGS) -c $<

 .cxx.o:; $(CXX) $(CXXFLAGS) -c $<

 Most make programs have default suffix rules for C compiles.
 $< is name of current prerequisite (suffix rules only)

 Example ex8

 Other Notes

 @ at start of line causes no echo of command
 - at start of line causes errors to be ignored

 $$ is the $ character in the command

 $(SHELL) is often set to the name of the shell to call

 Continuation lines: Backslash (\) followed by end of line

 Some makes use #include or .include

 Recursive makes

 SUBDIRS = A B C

 all:

 for d in $(SUBDIRS) ; do \

 (cd $$d; $(MAKE) all) ; done

