
 File I/O - Chapter 3

 Most UNIX I/O can be done with 5 system calls:
 open, read, write, close, lseek
 open(2) (man open)

 #include <fcntl.h>

 int open(const char *path, int flags, mode_t mode)

 flags

 O_RDONLY, O_WRONLY, O_RDWR

 O_APPEND, O_CREAT, O_EXCL, O_TRUNC

 mode (needed only with O_CREAT, 0 or not there)

 number representing permissions on creation

 C -- 777 vs 0777 vs 0x777

 permissions:

 read (r--, 4)

 write (-w-, 2)

 execute (--x, 1) (lookup in directory)

 Open (page 2)

 Who ---
 user (0700)

 group (0070)

 others (0007)

 umask(2) -- remove mode bits during open

 fd = open ("/file/name", O_RDWR|O_CREAT, 0700);

 fd return value

 fd >= 0 - open successful

 fd < 0 - open unsuccessful, error in errno

 Read and Write

 ssize_t read (int fd, void *buf, size_t nbytes)
 ssize_t write (int fd, const void *buf, size_t nbytes)

 fd is value returned by open

 buf is usually an array of data

 nbytes is size of buf (read) or size of data to write

 returned value

 > 0 number of bytes read or written

 0 EOF

 < 0 error

 lseek

 off_t lseek(int fd, off_t offset, int whence)

 fd -- number returned by open

 off_t -- Not necessarily a long or int ... could be a quad!

 "file pointer" in the file

 whence

 SEEK_SET - offset bytes from start of file

 SEEK_CUR - offset bytes from current location

 SEEK_END - offset bytes from end of the file

 return value -- new location of the file pointer (or error)

 ret = lseek (fd1, (off_t)0, SEEK_CUR) ?

 ret = lseek (fd1, (off_t)1000000, SEEK_END) ?

 program onemeg.c

 Close & more

 int close(int fd)

 Done using the file referenced by fd.

 I/O efficiency -- 1 byte vs 8k bytes.

 Example program using system calls.

 cat.c

 File Sharing

 Process Table Open File Table V-Node
 ---------------- -------------------- ---------
 fd entry ------> status/pointer---> real file entry

 2 independent processes open a file

 p1: open().... AND p2: open()....

 2 process tables

 2 entries in open file table

 1 v-node entry

 2 processes by fork

 p1: open(); ... fork() to get p2

 2 process tables

 1 entry in open file table

 1 v-node entry

 Note: fork(); ... open() is the first one

 Dup, dup2

 int dup(int oldfd)
 int dup2(int oldfd, int newfd)

 Copies oldfd pointer to new fd location.

 Does not change open file table, just the process fd table

 Two process fd entries point to same open file table entry

 dup -- returns first unused fd in table.

 dup2 -- if newfd is open, close newfd, then dup

 if ((fd = open (file, O_RDONLY, 0)) < 0) error

 if (dup2(fd, 0) < 0) error ...

 Other file related system calls (not complete)

 int fcntl(int fd, int cmd, ...)
 duplicate fds

 get/set fd flags

 record locks

 int ioctl(int d, unsigned long request, void *argp)

 "catchall"

 special hardware control ...

 e.g. terminal baudrate

