
 Chapter 4 - Files and Directories

 Information about files and directories
 Management of files and directories

 File Systems
 Unix File Systems

 UFS - original FS

 FFS - Berkeley

 ext/ext2/ext3/ext4 - Linux

 Many others similar to UFS ...

 Others -- possibly available on UNIX (Linux & *BSD)

 FAT - DOS, smaller thumb drives

 NTFS - Windows NT +

 HFS - Apple (Very old)

 NFS - Sun (now Oracle)

 AFS/Coda - CMU

 ZFS - Sun (now Oracle) (Zettabyte File System,1024^7 or 2^70)

 torrent/dropbox/.... -- "cloud file systems"

 many others (https://en.wikipedia.org/wiki/List_of_file_systems)

 UNIX file system - design

 File Types
 Regular File

 Directory File

 Character Special File

 Block Special File

 Symbolic Link

 FIFO

 Socket (Network)

 UNIX file system - layout

 Disk: | partition 1 | partition 2 | |

 Single partition (some machines)
 | file system 1 | file system 2 | file system 3 | ... |

 Single File System
 | Boot | Super | inodes | data blocks |

 Boot - bootstrap program

 Super - contains information about partition

 inodes - One per real file

 data blocks - both files and directories ...

 File system blocks: usually power of 2, 1k to 8k

 Each section -- integral number of file system blocks

 UNIX file system

 Directory:
 | Name, inode # | Name, inode # | |

 Each entry in a directory is a "link"

 Inode contains number of links

 File (inode & data) is not deleted until link count is 0

 Original Unix FS, name limited to 14 characters

 Berkeley FFS, <sys/dirent.h> MAXNAMLEN -- 255

 Inode

 owner, group, permissions
 file type (reg, dir, sym link, ...)

 number of links

 size, number of blocks (different!)

 times (accessed, modified, status changed)

 Access to data blocks

 n data block pointers (disk address)

 inode -> data block
 1 - indirect block

 inode -> pointer block -> data block
 1 - 2 level indirect block

 inode -> pointer block -> pointer block -> data block
 1 - 3 level indirect block

 inode -> ptr block -> ptr block -> ptr block -> data block

 NetBSD: 32 bit block address, 8K blocks, 2048 pointers/block, 12 direct

 12 + 2048 + 2048 ^ 2 + 2048 ^ 3 = 8,594,130,956 blocks

 8,594,130,956 * 8 * 1024 = 70,403,120,791,552 bytes per file

 information about files/dirs

 system calls - stat(2), fstat(2), lstat(2), (stat(1), stat.c)

 int stat(const char *path, struct stat *sb)

 int lstat(const char *path, struct stat *sb)

 int fstat(int fd, struct stat *sb)

 struct stat { /* NetBSD version */

 dev_t st_dev; /* device containing the file */

 ino_t st_ino; /* file’s serial number */

 mode_t st_mode; /* file’s mode (protection and type) */

 nlink_t st_nlink; /* number of hard links to the file */

 uid_t st_uid; /* user-id of owner */

 gid_t st_gid; /* group-id of owner */

 dev_t st_rdev; /* device type, for device special file */

 struct timespec st_atimespec; /* time of last access */

 struct timespec st_mtimespec; /* time of last data modification */

 struct timespec st_ctimespec; /* time of last file status change */

 off_t st_size; /* file size, in bytes */

 int64_t st_blocks; /* # of 512 byte blocks allocated for file */

 u_int32_t st_blksize; /* optimal file sys I/O ops blocksize */

 u_int32_t st_flags; /* user defined flags for file */

 u_int32_t st_gen; /* file generation number */

 };

 stat calls information

 Macros for file type
 S_ISREG(st_mode)

 S_ISDIR(st_mode)

 S_ISCHR(st_mode)

 S_ISBLK(st_mode)

 S_ISFIFO(st_mode)

 S_ISLNK(st_mode)

 S_ISSOCK(st_mode)

 User, Group, Other protection bits in st_mode

 Extra special protection bits in st_mode
 Set User ID

 Set Group ID

 Sticky bit

 stat.c program -- blocks vs file size

 Other system calls

 int access(const char *path, int mode)
 R_OK, W_OK, X_OK, F_OK

 change modes

 int chmod(const char *path, mode_t mode)

 int lchmod(const char *path, mode_t mode)

 int fchmod(int fd, mode_t mode)

 chmod(1) -- changes setuid/setgid/sticky bits

 Change owner

 int chown(const char *path, uid_t owner, gid_t group);

 int lchown(const char *path, uid_t owner, gid_t group);

 int fchown(int fd, uid_t owner, gid_t group);

 Other system calls (page 2)

 truncate a file
 int truncate(const char *path, off_t length)

 int ftruncate(int fd, off_t length)

 Add a link to a file

 int link(const char *oldname, const char *newname)

 Works only on files

 On the same filesystem

 need write permission to last directory in newname

 Adds a directory entry

 Does not double file storage needs

 ln(1), link(1)

 Other system calls (page 3)

 unlink a file name
 int unlink(const char *path)

 Must have write and "execute" access to directory

 Sticky bit for directory:

 Off -> do not have to own the file

 On -> must own file

 deletes entry in directory

 file is deleted when:

 link count is zero

 file is not open

 remove(3) -- alias for unlink

 rm(1) -- command line access

 Other system calls (page 4)

 Rename a file
 int rename(const char *oldname, const char *newname)

 oldname and newname must be on same filesystem

 File

 newname can not be an existing directory

 if newname exists and is a file, it is unlinked

 must have write permission to both dirs

 Directory

 if newname exists and is empty, it is unlinked

 if newname exists and is not empty, error

 newname can not be a subdirectory of oldname

 If unlinking a directory or a file, must have permission

 mv(1) -- command line access

 will copy files from one file system to another

 Other system calls (page 5)

 Symbolic links
 int symlink(const char *name1, const char *name2)

 not a "hard link"

 name2 is new entry

 name1 is stored for use later

 name1 and name2 do not have to be on same file system

 name1 does not have to exist!

 unlink removes only stored name

 int readlink(const char *path, char *buf, size_t bufsiz)

 readlink(1)

 Other system calls (page 6)

 Times ...
 int utimes(const char *path, const struct timeval *times)

 int lutimes(const char *path, const struct timeval *times)

 int futimes(int fd, const struct timeval *times)

 Sets access and modification times.

 times:

 NULL -> set to current time

 Non NULL -> points to a 2 element array,

 access time

 modification time

 Use?

 e-mail -- modified time after access time

 tar(1) -- "tape archive"

 Backup / restore

 Other system calls (page 7)

 Making directories
 int mkdir(const char *path, mode_t mode)

 must have write access to create

 mkdir(1)

 mkdir -p /full/new/path/you/want

 Deleting directories

 int rmdir(const char *path)

 directory must be empty (only . and ..)

 must have write access to parent directory

 rmdir(1)

 rm -r tree

 Other system calls (page 8)

 working directories
 int chdir(const char *path)

 int fchdir(int fd)

 char * getcwd(char *buf, size_t size) /* Library call */

 Reading directories

 Early UNIX -- open, read, close
 Had to know format of directory

 Different code for different file systems

 Now -- library of routines, supplied by each OS

 DIR *opendir(const char *filename)

 struct dirent *readdir(DIR *dirp)

 int closedir(DIR *dirp)

 long telldir(const DIR *dirp)

 void seekdir(DIR *dirp, long loc)

 void rewinddir(DIR *dirp)

 int dirfd(DIR *dirp)

 Works for any file system

 Do not need to know directory format

 struct dirent

 struct dirent { /* NetBSD version */
 u_long d_fileno; /* file number of entry aka d_ino*/
 u_short d_reclen; /* length of this record */
 u_short d_namlen; /* length of string in d_name */
 char d_name[MAXNAMLEN + 1]; /* maximum name length */
 };

 POSIX specifies only d_ino and d_name.

 Simple ls program (ls.c)

 Other system calls (page 9)

 File system sync
 void sync(void)

 Single file sync

 int fsync(int fd)

