Sorting (Grama Ch 9, Matloff Ch 12)

0 Common operation
Olnternal (in memory) vs external (using supplementary storage)

OLot of different sequential algorithms
O Comparison Based
O bubble, insertion, shell, merge, quick, ...
0 non-comparison based
aradix (O(n* keysize) )
O Compare-exchange, O(n log n) best algorithms
O Parallel compare-exchange best expected O(log n)
OBasis for compare-exchange can be modeled by a circut
O circuits are another model of parallel computation!




Batcher’ s bitonic mergesort

O bitonic sequence
O at most two "changes of direction”

Oand remains so for any rotation of the sequence
4213781009
Ooriginally designed for circuits, can be generalized to processes
O gates -- the computation elements
Owidth of circut -- paralelism, time-- parallel time
aBitonic merge
O compare corresponding items in each half

Oresultsin two bitonic sequences ready to be merged, all numbers in one greater than other

3 781094 2 1 (4away comparisons)
342 197 8 10 (2away comparisons)
2 13 4879 10 (1away comparisons)
123478910

0 Communication pattern?




Bitonic mergesort (page 2)

O Recursive Version
adBitonic merge sort (elements) (assending)

ain parallel, sort first 1/2 assending, sort second 1/2 descending

Oin parallel, merge bitonic sequence

aTime?

oO(log™2 n)
O Cost?

anlog™2 n -- not cost optimal
O |ssues?

O Iterative bitonic mergesort algorithm, p ==
fori=1tologp

perform a bitonic merge on PE groups of size 2/ in alternating directions

dBitonic merge sort, p < n?
Oa) Local sort

Ob) "exchange in merge" sends up to n/p elements neighbor and saves lower or upper half




Quicksort

O(n"2) worst case, O(n log n) average

Algorithm
O Partiton to "left, pivot, right"

O sort left and right with quicksort.

First try:
O Do both sub sortsin parallel.
O pivot takes O(n)
Olog n rounds
atime bounded below by n (more like nlog n)
dtime-processor product bounded below by n2

Pivotin O(1)?
aif so, time bounded below by log n
Oonly on a PRAM!




CRCW PRAM algorithm

Arbitrary model CRCW

Algorithm builds a binary tree
dpivot isroot

Olessisleft, greater isright
Osorted isinorder traversal
Omust move data so tree isinorder in array
O Does this sound parallel?

CRCW dgorithm ... build tree!

O Data/arrays
droot - common
Oparent[1..n] (p[i])
aleftchild[1..n] (Ic[i])
arightchild[1..n] (rc[i])




Algorithm

procedure build_tree (a[1...n]) {
foreach processi {
root<-i; /* CW step */
p[i] <-root; Ic[i] <-rc[i] <- n+1; (NULL?)
}
If 1 I=root {
repeat until all processes terminated {
It a[i] <&[p[i]] or
(@] = &a[p[i]] and i < p[i]) {
Ic[p[i]] <-1; /* CW step */
ifIc[p[i]] =1 { exit; }
pli] <- Icfpfi]];
} else{
rc[p[i]] <-1; /* CW step */
If re[p[i]] =1 { exit; }
pli] <-rc[p(i]];
}
}
}
}




Fina detalls....

0 number the nodes (O(log n) on CRCW)

OHow? (Grama leavesit to the reader, problem 9.15)

Omove into position (O(1))

Quicksort A[1..n]:
Obuild_tree (A[1..n]) yeilding p[], rcf[], Ic[]
Onumber_nodes (A, p, rc, Ic)
dmove to proper location

Times?
OBuild Tree?
o O(log n)
O Number nodes O(log n)
OMove (O(1))
OTota O(log n)




Quicksort on "practical architectures"

Shared Memory version
O n numbers, p processors

ainitial n/p per processor

Quicksort (A, start, stop, p processors (pstart, pstop))

O Processor pstart selects pivot (usual methods)
O Broadcasts pivot to all processorsin pstart->pstop
O Each processor does local partition
aDo 2 prefix sums on number < pivot and >= pivot
Okeep prefix & total sums. Sis set < pivot
OUsing result of Prefix sums
O New <- reorded numbers (barrier)
OA <- new (barrier)
ORecurse: (Sub Quicksortsin paralldl)
anp <- cell(|S|p/n+.5)
O Quicksort (A, start, start+|S]-1, np, (pstart, pstart+np-1))
O Quicksort (A, start+|S|, stop, p-np, (pstart+np-1, pstop))

Times?
O Select pivot -- O(1), broadcast?, local partition O(n/p), Prefix sums O(log p)
O Reorder O(n/p), expected recursion O(log p)
OTota: O(n/plog p)




Quicksort on a message passing machine?

Do the shared memory algorithm in a distributed fashion!
O pivot -> broadcast

Oprefix sums ... doable
Omovement ... All to All comm
OSimilar ...

Quicksort on a hypercube? (Matloff 12.1.3 Hyperquicksort)
each PE sorts the sub array assigned to that PE
for i =ddownto 1
for each i-cube:
root of the i-cube broadcasts its median to al in the i-cube, to serve as pivot
consider the two (i-1)-subcubes of thisi-cube
each pair of partnersin the (i-1)-subcubes exchanges data:
low-numbered PE givesits partner its data larger than pivot
high-numbered PE givesits partner its data smaller than pivot
O lssues?
afinal placement of elements, e.g. sort is sub step in most algorithms
Oparallel prefix needed to calculate final location

afinal movement?







