
 Sorting (Grama Ch 9, Matloff Ch 12)

 Common operation
 Internal (in memory) vs external (using supplementary storage)

 Lot of different sequential algorithms

 Comparison Based

 bubble, insertion, shell, merge, quick, ...

 non-comparison based

 radix (O(n * keysize))

 Compare-exchange, O(n log n) best algorithms

 Parallel compare-exchange best expected O(log n)

 Basis for compare-exchange can be modeled by a circut

 circuits are another model of parallel computation!

 Batcher’s bitonic mergesort

 bitonic sequence
 at most two "changes of direction"

 and remains so for any rotation of the sequence

 4 2 1 3 7 8 10 9

 originally designed for circuits, can be generalized to processes

 gates -- the computation elements

 width of circut -- parallelism, time -- parallel time

 Bitonic merge

 compare corresponding items in each half

 results in two bitonic sequences ready to be merged, all numbers in one greater than other

 3 7 8 10 9 4 2 1 (4 away comparisons)

 3 4 2 1 9 7 8 10 (2 away comparisons)

 2 1 3 4 8 7 9 10 (1 away comparisons)

 1 2 3 4 7 8 9 10

 Communication pattern?

 Bitonic mergesort (page 2)

 Recursive Version
 Bitonic merge sort (elements) (assending)

 in parallel, sort first 1/2 assending, sort second 1/2 descending

 in parallel, merge bitonic sequence

 Time?

 O(log^2 n)

 Cost?

 n log^2 n -- not cost optimal

 Issues?

 Iterative bitonic mergesort algorithm, p == n

 for i = 1 to log p

 perform a bitonic merge on PE groups of size 2^i in alternating directions

 Bitonic merge sort, p < n?

 a) Local sort

 b) "exchange in merge" sends up to n/p elements neighbor and saves lower or upper half

 Quicksort

 O(n^2) worst case, O(n log n) average

 Algorithm
 Partiton to "left, pivot, right"

 sort left and right with quicksort.

 First try:

 Do both sub sorts in parallel.

 pivot takes O(n)

 log n rounds

 time bounded below by n (more like n log n)

 time-processor product bounded below by n^2

 Pivot in O(1)?

 if so, time bounded below by log n

 only on a PRAM!

 CRCW PRAM algorithm

 Arbitrary model CRCW
 Algorithm builds a binary tree
 pivot is root

 less is left, greater is right

 sorted is inorder traversal

 must move data so tree is inorder in array

 Does this sound parallel?

 CRCW algorithm ... build tree!

 Data/arrays

 root - common

 parent[1..n] (p[i])

 leftchild[1..n] (lc[i])

 rightchild[1..n] (rc[i])

 Algorithm

 procedure build_tree (a[1...n]) {
 foreach process i {
 root <- i; /* CW step */
 p[i] <- root; lc[i] <- rc[i] <- n+1; (NULL?)
 }
 if i != root {
 repeat until all processes terminated {
 if a[i] < a[p[i]] or
 (a[i] = a[p[i]] and i < p[i]) {
 lc[p[i]] <- i; /* CW step */
 if lc[p[i]] = i { exit; }
 p[i] <- lc[p[i]];
 } else {
 rc[p[i]] <- i; /* CW step */
 if rc[p[i]] = i { exit; }
 p[i] <- rc[p[i]];
 }
 }
 }
 }

 Final details

 number the nodes (O(log n) on CRCW)
 How? (Grama leaves it to the reader, problem 9.15)

 move into position (O(1))

 Quicksort A[1..n]:

 build_tree (A[1..n]) yeilding p[], rc[], lc[]

 number_nodes (A, p, rc, lc)

 move to proper location

 Times?

 Build Tree?

 O(log n)

 Number nodes O(log n)

 Move (O(1))

 Total O(log n)

 Quicksort on "practical architectures"

 Shared Memory version
 n numbers, p processors

 initial n/p per processor

 Quicksort (A, start, stop, p processors (pstart, pstop))
 Processor pstart selects pivot (usual methods)

 Broadcasts pivot to all processors in pstart->pstop

 Each processor does local partition

 Do 2 prefix sums on number < pivot and >= pivot

 keep prefix & total sums. S is set < pivot

 Using result of Prefix sums

 New <- reorded numbers (barrier)

 A <- new (barrier)

 Recurse: (Sub Quicksorts in parallel)

 np <- ceil(|S|p/n+.5)

 Quicksort (A, start, start+|S|-1, np, (pstart, pstart+np-1))

 Quicksort (A, start+|S|, stop, p-np, (pstart+np-1, pstop))

 Times?

 Select pivot -- O(1), broadcast?, local partition O(n/p), Prefix sums O(log p)

 Reorder O(n/p), expected recursion O(log p)

 Total: O(n/p log p)

 Quicksort on a message passing machine?

 Do the shared memory algorithm in a distributed fashion!
 pivot -> broadcast

 prefix sums ... doable

 movement ... All to All comm

 Similar ...

 Quicksort on a hypercube? (Matloff 12.1.3 Hyperquicksort)

 each PE sorts the sub array assigned to that PE

 for i = d downto 1

 for each i-cube:

 root of the i-cube broadcasts its median to all in the i-cube, to serve as pivot

 consider the two (i-1)-subcubes of this i-cube

 each pair of partners in the (i-1)-subcubes exchanges data:

 low-numbered PE gives its partner its data larger than pivot

 high-numbered PE gives its partner its data smaller than pivot

 Issues?

 final placement of elements, e.g. sort is sub step in most algorithms

 parallel prefix needed to calculate final location

 final movement?

