
 History of Parallelism ...

 HPC -- High Performance Computing
 1970s: (1976/77 numbers, each a single CPU)

 Big Iron: 1975-7 Cray-1, 5.5 Tons, 8MB memory, 160 MFLOPS, $8 Million (64 bit)

 Mainframe: IBM System/370 Model 138, 1MB memory, ? FLOPS, $350 K (32 bit)

 Mid/small: DEC pdp 11/70, 4 MB memory, .6 MIPS, $30-50K (16 bit)

 Micro Processor: Intel 8086, 1MB memory max, .3 MIPS, $360 (16 bit)

 Reference to today:

 $360 in 1975 is now about $2,010, $8 Mil is now about $44.6 Mil

 iPhone 16 Pro: Apple A18 Pro chipset, 4040 Mhz max clock, $999 and up to $1500

 6 core CPU, 2 performance, 4 efficiency, 6 core GPU, 16 core neural engine

 35 TIPS, 2289 GFLOPS

 8 Gig Ram, Up to 1TB nvme storage, camers (not available in 1976)

 Key idea:

 Cray-1: Big and expensive, "Elephant"

 Intel 8086: Small and "inexpensive", "Can an army of ants out perform the elephant?"

 Decades starting in 1970s

 1970
 slow machines
 super computers
 appearance of microprocessor
 1980
 VLSI
 availability of real parallel machines
 lots of research/activity
 1990
 real parallel machines fall out of favor
 network of workstations, small clusters
 first GPUs for faster graphics
 2000
 very fast i386 machines
 multiple threads per cpu ...
 CPU speeds stopped doubling every 18 months
 2005
 multi-core CPUs as standard
 CPU speeds stagnant or very slowly increasing
 3.2 GHz P4 -- Old?
 2010
 bigger clusters
 more CPUs per box
 more and more powerful GPUs

 Decades starting in 1970s (Page 2)

 2020
 even bigger clusters
 even more CPUs per box, lots of memory
 GPUs for computation only, no graphics heads (AI needs)

 Cluster Sizes today ... top500.org (November 2024)
 1: El Capitan, HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8Ghz, ... 11,039,616 cores, 1,742.00 PFLOPS (US)

 2: Frontier, HPE Cray EX235a, ... 9,066,176 cores, 1,353 PFLOPS (US)

 3: Aurora, HPE Cray EX, ... 9,264,128 cores, 1,012 PFLOPS (US)

 4: Microsoft DNv5, Xeon Platinum ... 2,073,600 cores, 561.2 PFLOPS (US, azure)

 5: HPC6 - HPE Cray EX235a, ... 3,143,520 cores, 477.90 PFLOPS (Italy)

 ...

 Moore’s "Law" --

 1965: Gordon Earle Moore, co-founder of Intel

 capabilities of computing double every 18 months to 2 years ...

 speed -- quit doubling every 18 months to 2 years around 2000

 total computational power still doubling

 Now ... parallelism is the way to continue to double

 Definitions:

 Thread -- "Thread of execution", requires an associated stack
 Processor -- "A CPU" -- physical central processor, may be hyper-threaded

 Pipelining -- "Typically a series of operations done in hardware"

 Parallel Machine (old) -- "A single machine with a number of processors where all processors are working together to solve a

single problem. Each processor is running one thread or one thread per hardware thread."

 Distributed Computing -- "A collection of machines, possibly geographically distributed, each running an independent OS and

running a variety of threads (processes), working together in some manner."

 (more recently) Parallel Computing: "A collection of cooperating threads working together to solve a single problem."

 Nelson’s Definitions:

 Parallel: Geographically close, high speed connections, one or limited applications running

 Distributed: Geographically distributed, "slow" connections, many applications

 A machine with 8 CPUs running a collection of unrelated processes is not doing "parallel computation".

 A machine with 8 CPUs running one process with 8 threads running at the same time may be doing "parallel computation".

 HPC (High Performance Computing) -- Typically done on a cluster now and/or GPUs

 Why parallel computing?

 Historically -- machines were slow
 1 machines is not fast enough to compute results in "time budget"

 Sounded interesting

 VLSI -- how to use it ...

 Memory Speed and Disk speed ... vs processor speed

 Data communication advances ...

 How to use parallel computation

 Engineering & Design
 e.g. airfoil design, modeling and simulation

 Scientific Applications

 e.g. computational physics, biological work, chemistry ..

 Commercial Applications (often distributed not parallel)

 e.g. distributed databases, distributed web servers, machine learning, ...

 google ...

 Computational finance (10% of top 500 as reported about 5 years ago.)

 Government

 e.g. weather prediction, military applications,

 Computer Science Applications?

 e.g. cryptography ... SHA-3 competition

 Deep learning, AI, ...

 Eijkhout HPC intro has a good section on Applications

 Architectures ... (Historical view)

 Eijkhout HPC Intro section 1, Pacheco Chapter 2, Grama Chapter 2
 Sequential Computer

 CPU

 Memory

 Connection between the two

 Parallel Computer (early ones built, some current ones with NUMA, non-uniform memory access)

 n CPUs

 m Memories

 Connection from n to m ...

 variety in kind of CPU

 Speed up attempts on sequential computers

 Pipelining, data & instruction

 Multi pipelines, "super scalar"

 Very Long Instruction Word processors

 Speed ups -- Memory caching

 1 GHz CPU (1ns cycle time) vs 100ns memory
 memory access is bottle neck. (100 cycles/mem op)

 3.4GHz CPU, 800 MHz memory (2007 CPU, PC6400 mem)

 .294 ns CPU clock time, 3.75 - 10 ns memory cycle

 4.8GHz-5.2GHz CPU, 3600 MHz memory (2025 AMD Ryzen 7, 9800x3D, DDR5)

 .2 ns CPU clock time, 14 ns memory latency, higher bandwidth, 4ns prefetch

 Add multiple CPUs accessing same memory

 Cache memory between CPU & memory

 smaller than main memory

 faster than main memory (e.g. 0.2ns)

 much more expensive

 Cache fetch & hit ratio

 Memory bound programs depend on hit ratio

 memory layout makes a difference!

 Row major layout, column first access

 Multi-threading & prefetching ...

 Classes of Parallel computers (Flynn’s Taxonomy)

 Single Instruction, Single Data (SISD) -- no parallelism

 Single Instruction, Multiple Data (SIMD)

 all cpus execute same instruction at same time

 parallel done by different data

 for all i in [0 ...999] c[i] = a[i] + b[i]

 mask to turn off some data element ...

 for all i in [1 .. 100] if (i % 2) c[i-1] += c[i]

 Multiple Instruction, Multiple Data (MIMD)

 each cpu has own program and data

 synchronization by communication

 no lock step execution

 CPU access to memory

 Single Program, Multiple Data (SPMD) ... not really a parallel computer or in Flynn’s Taxonomy

 Usually run MIMD machines

 Single program not in sync like SIMD

 Runs well on cluster or multi-core CPU or both

 Communication ... Global Memory

 One memory, Many CPUs. Synchronization for access
 Uniform Memory Cost (unrealistic)

 Log time Memory Cost (NUMA architectures)

 cache coherence problems

 Typical theory models ... PRAM (Casanova Chapter 1)

 concurrent read, concurrent write (CRCW)

 exclusive read, exclusive write (EREW)

 concurrent read, exclusive write (CREW PRAM)

 Concurrent write: (CRCW)

 common (or "consistent mode") -- all write same value

 arbitrary - arbitrary PU writes

 priority - PU with lowest number wins

 fusion - some operation, eg sum, and, or, ...

 All PUs execute the same "program" syncronously.

 Can have some processors not execute during a step

 Lots of theory done using this model

 Communication with Non-shared memory

 CPU with private memory
 Communication Network (message passing)

 Bus based: broadcast, limited bandwidth, cheap

 Crossbar switches: full bandwidth, expensive

 multi-stage crossover: omega network, log p depth

 moderate bandwidth, moderate expense

 blocking access

 completely connected

 star

 mesh

 linear

 2 d mesh

 3 d mesh (weather modeling ...)

 hypercube n-d, 2 node mesh

 trees

 fat tree

 Network of Workstations

 Common "Parallel Machine" today
 Connections ...

 High speed "switch" (Inifiniband is a common one now)

 our old ones, 100GB/s

 our new ones, 400GB/s

 High speed ether (not quite 400GB/s)

 May require more than one switch

 Network of Custom Build Nodes -- e.g. Silicon Mechanics Clusters

 WWU compute cluster:

 1 head node: 6 Cores

 compute nodes: 128 cores (256 hardware threads)

 GPU nodes: 88 cores, 165,308 CUDA cores, 1368 tensor cores

 Static Interconnection Networks ...

 Measures
 Diameter -- max distance between 2 nodes

 ring of p -- p/2

 mesh -- 2 * (sqrt(p) - 1)

 hypercube -- log (p)

 Connectivity -- multiplicity of paths between nodes

 Arc connectivity -- minimum number of arcs to remove to disconnect net

 1 -- linear array, tree, star

 2 -- rings & 2-d meshes (4 on 2-d meshes with wraparound)

 log p -- hypercube

 Measures (page 2)

 Bisection Width -- number of links to remove to equally partition nodes
 mesh - 2 sqrt(p)

 tree - 1, star - ?

 hypercube -- do it in class ...

 Bisection Bandwidth -- number of bits / unit time

 channel width -- number of bits at same time

 channel rate -- peak rate per "wire"

 channel bandwidth -- peak rate per connection

 Bisection Bandwidth = channel bandwidth * bisection width

 Cost -- total number of links

 liner array, trees -- p-1

 d-dim wraparound mesh -- dp

 hypercube -- (p log p) / 2 links

 How about our machine?

 Cache Coherence in MP Systems

 shared memory

 each processor has own cache

 reads and writes to same memory locations by >1 processors

 hardware protocols to invalidate cache entries ...

 Books do more detail ... I’m not as interested ... (Grama and Pacheco)

 Communication Costs -- message passing

 Used to talk about communication costs on various "networks"
 Now, primarily infiniband or ether

 ether can be switched, bisection width?

 infiniband can do TCP/IP over it! Again, bisection width

 Other "problems"

 Algorithm connection graph vs hardware graph

 hypercube in a 2-d mesh

 2-d mesh in linear

 ... in NOW

 Tradeoffs -- parallel computing is full of them

 cost - performance

 algorithm to match hardware ?

 keep looking ...

 Parallel Algorithms & Design (Ch 3)

 Sequential:
 Data & program

 Parallel:

 What can be done in parallel?

 mapping concurrent work -> multiple threads

 distribution of data to threads

 "shared data" management

 Synchronizing the threads

 Approach

 from serial program?

 from problem?

 Jacobi Iterations

 Code:
 double x [1..1000, 1..1000], nv, diff; int i, j;

 /* initialize X: all to zero except fixed locations ...*/
 repeat
 diff = 0;
 for i <- 1 to 1000 do
 for j <- 1 to 1000 do
 if (not a fixed location) { // edge code ignored
 nv <- (x[i-1,j] + x[i+1,j] + x[i,j-1] + x[i,j+1])/4
 diff <- max (diff, abs(x[i,j]-nv))
 x[i,j] <- nv
 }
 until diff < tolerance

 solution of a ODE.

 loop parallelism?

 data dependency in original code not necessary

 could calculate all into a new array

 communication?

 How to design a parallel algorithm

 Ignore current state of automatic tools to do:
 sequential code -> tool -> parallel solution

 Best to start again with parallel in mind
 Start with problem

 Look for parallelism

 dependency graph (e.g dense matrix multiply)

 amount of parallelism?

 expected speed of graphs?

 Consider available parallelism

 granularity

 cluster vs multi-processor

 degree of concurrency

 communication bandwidth

 Other considerations

 Data & Thread placement
 Thread interaction

 Processes vs Processors

 "Decomposition Techniques"

 Divide-and-conquer (recursive)

 Data Decomposition (book)

 partition data first ... then look

 Exploratory Decomposition

 search tree decompositions

 Speculative Decomposition

 Parallel discrete event simulation

 (e.g. evaluating more than one switch ...)

 Hybrid Decompositions

 Other issues

 Let the problem help design the solution!

 Task generation

 static situation

 dynamic situation

 Task size

 Very small to Very Large

 Task data

 Task communication

 static vs dynamic

 regular vs irregular

 read-only vs read/write

 one-way vs two-way

 Load Balancing

 static mapping

 dynamic mapping

 Other issues (page 2)

 Array Distribution Schemes (distributed memory systems)
 Block distributions

 Row-wise

 Column-wise

 Sub-matrix

 Cyclic Distributions

 Block Cyclic Distributions

 Randomized block distribution

 Graph Partitioning

 Mappings based on task partitioning (NP complete)

 Hierarchical Mappings

 Dynamic Mappings

 Centralized (master/slave)

 Distributed Schemes

 Other issues (page 3)

 Reducing interaction overheads
 maximize data locality

 minimize data exchange

 less frequent interaction

 Minimize Hot spots & contention

 Data replication (data locality)

 Overlapping computation and interactions

 Overlap interactions

 Avaliable libraries

 LINPACK -- linear algebra package

 BLAS - basic linear algebra subprograms

 started in 1970

 now has parallel LINPACK

 may be others

 Parallel Algorithm Models (CH 3.6)

 Data-Parallel
 Compute-Aggregate-Broadcast

 Task Graph Model (tasks usually large)

 Work pool model

 Master-slave model

 Pipeline (producer consumer)

 Hybrid

 Communication operations (Ch 4)

 Broadcast: one to all
 Jacobi: delta value, do we need to continue

 Reduction: all to one (aka aggregation)

 Jacobi: doing a minimum across all computed values

 All to All broadcast

 all nodes do "1 to all broadcast"

 limiting factor on speed?

 All to All personalized -- unique messages

 n x n matrix on n processors, transpose

 All to All reduce

 different "all to 1 reductions" at same time

 all-reduce

 all to 1 reduce, 1 to all broadcast

 Scatter operation: aka one to all personalized communication

 Gather operation: all to one personalized communication

 Prefix Sums

 Prefix sums (aka scan, aka parallel prefix)
 P_i, i=0 ... n-1, has V_i

 Result -- S_i, S_i = Sum (k=0, k<=i) of V_i

 prefix sums on a CREW PRAM

 PrefixSum(array x, array s, int n)

 Input: x[1] - x[n]

 Output: s[1] - s[n]

 Temp: y[1] - y[n/2], z[1] - z[n/2]

 1) if n=1, set s[1] <- x[1], exit

 2) for each i, 1 <= i <= n/2 in parallel do

 y[i] <- x[2i-1] + x[2i]

 3) PrefixSum(y,z, n/2)

 4) for each i, 1 <= i <= n in parallel do

 i = 1: s[1] <- x[1]

 i even: s[i] <- z[i/2]

 i odd > 1: s[i] <- z[(i-1)/2] + x[i]

 Prefix sums

 non-recursive on a EREW PRAM?

 PrefixSum(array x, array s, int n)
 input: x[0] - x[n-1] output s[0] - s[n-1]
 temp: z[0] - z[n-1], t[0] - t[n-1], d

 1) for all i in [0 .. n-1] in parallel do
 s[i] <- x[i], z[i] <-x[i]
 2) if i = 1, exit
 3) d <- 0
 4) while d < log n
 for all i in [0 .. n-1] in parallel do
 j <- i XOR 2^d
 if (j < n)
 t[i] <- z[j]
 z[i] <- z[i] + t[i]
 if (i > j)
 s[i] <- s[i] + t[i]
 d = d + 1

 "Communication" pattern?

 Prefix sums on a Hypercube

 procedure prefix_sum (id, d, data, result)
 { result <- data;
 msg <- data;
 for i <- 0 to d-1
 other <- id XOR 2^i
 send msg to other;
 receive newdata from other;
 msg <- msg + newdata;
 if (other < id) result <- result + newdata
 }

 Prefix sums on a cluster where n is much larger than p?
 distribute the data?

 what needs to be communicated?

 Pattern?

 Analysis of a parallel algorithm

 Sources of "overhead"
 lack of parallelism (idling)

 communication

 excess computation

 synchronization time

 poor algorithm

 Measures

 Time -- sequential

 CPU

 clock

 Time -- parallel

 clock

 total -- Sum of CPU over all processors

 Overhead time

 T_o = p * T_p - T_s

 Speedup

 Performance gain
 S = T_s / T_p

 Typically use O-notation

 Example - sum: n numbers, n processors

 T_s is O(n)

 T_p is O(log n)

 S is O(n / log n)

 Use best know sequential algorithm

 Limits to speedup?

 At best P!

 <P => what?

 >P => what?

 cache effects ?

 search tree effects?

 Efficiency & Cost

 Efficiency
 E = S / p

 Often may give a measure of use of processors.

 e.g. tree addition: E = O(1/log n)

 Cost

 C = p * T_p (total time?)

 Cost-optimal

 C & T_s has same growth

 efficiency of Theta(1)

 example: sorting (log n)^2 for n PEs, n log n for seq

 S = n / log n, E = log n, C = n (log n)^2

 Mapping Algorithm -> Machine

 In practice, n != p.
 choose less processors

 choose less data

 n/p data items per processor?

 simulate n processes vs change algorithm

 adding n numbers on p processors

 n on n: time T(log n)

 n on p: (mapping wrap) time T((n/p) log p)

 n on p: (mapping block) time T(n/p + log p)

 TERMS

 Course grain, Fine grain

 Scalability, how does it work on a variety of n&p

 Overhead! (T_o total overhead)

 Scalability of Parallel Systems

 Speedup vs number of processing elements

 for various problem sizes

 "results"

 increase p, efficiency goes down

 increase n, efficiency goes up

 Type Architecture & Corollary ...

 Lawrence Snyder:
 "Type Architectures, Shared Memory, and the Corollary of Modest Potential"

 Fundamental Law:
 A parallel solution utilizing p processors can improve the best sequential solution by at most a factor of p.

 Type Architecture: Model of a parallel computer

 Typical problems that can use parallelism ... compute bound

 typically polynomial in n (n size of problem)

 often n^4. x, y, z, time

 time bound, parallel -> larger problem

 t = cn^x

 increase by factor of m

 Larger problem (cont)

 t = c (nm) ^ x / p (Best speedup!)
 m = p ^ (1/x), or p = m ^ x

 x=4, m=100 => p = 100,000,000

 x=4, p=64 => m = 2.828427

 x=4, p=300,000 => m = 23.403473

 x=4, m=57.5902 => p = 11,000,042

 processor speed: sequential vs parallel

 Corollary of modest potential

 Parallelism doesn’t buy us much ... don’t waste it!

 Language: Medium is message

 Sequential language => sequential solution!
 hard to get parallelism out of sequential code

 Language mapping?

 sequential -> easy to any sequential machine

 parallel -> how to translate?

 Model?

 PRAM?

 shared memory

 constant time access to memory

 Other?

 P processors

 fixed number of edges

 communication net

 Evaluate PRAM (eg. paracomputer)

 Problem: maximum
 algorithm?

 Valiant, time O(log log n) for items X_i, 1 <= i <= n

 Stages, n(s) number of items, p processors, p = original n

 Stage:

 partition n(s) items into r sets of equal size (+/-1)

 where sum (i=1 to r) (|s_i| choose 2) <= p

 set b_i, 1 <= i <= n(s), to 0

 for set s_i, (|s_i| choose 2) processors assigned

 each processor compares two elements of s_i,

 each processor sets bit b_i to 1 for looser X_i in comparison

 requires at least common model concurrent write.

 X_i with corresponding b_i as 0 is largest

 next round has r elements in computation

 total number of rounds log log n.

 Each round constant time.

 There is a way to do the following in constant time

 compute r

 assign processors for comparisons

 move the r winners to the "bottom of the array"

 Example -- 1000 elements

 332 sets of 3, 2 of 2, 996+2 = 998 processors => 334 winners

 46 sets of 7, 2 of 6, (7:2)=21, (6:2)=15, 46*21+2*15 = 996
 => 48 winners

 2 sets of 24, (24:2) = 276, 552 => 2 winners

 1 processor chooses ultimate winner

 4 stages --- but must charge for concurrent write!

 Real hardware would cost log n for concurrent write

 => true time O(log n * log log n)

 Straight forward tree algorithm is O(log n)
 PRAM based => sub-optimal!

 Costs

 Machine model (type architecture) must accurately represent costs
 PRAM can not be realized with constant time concurrent write

 Snyders type architecture:
 P processors with local memory

 fixed number of edges

 communication net (fixed degree graph)

 global controller

 Hypercube?

 not fixed number of edges

 NOW / Clusters

 fixed edges (1+, fixed hardware)

 net fixed ... X is degree of graph

 HPE CRAY El Capitan -- top of Nov 24 top 500.

 11,039,616 cores, AMD 4th gen EPYC 24C 1.8GHz

 interconnect: slingshot-11

 fixed degree interconnect, GPUs connected (one connection) to slingshot

 Based on the Rosetta chip, 64 ports running at 200Gb/sec

 clearly need a network of these chips for 11M cores

 Aggressive adaptive routing, advanced congestion control, very low average and tail latency, ...

 Parallel Algorithm Design (Foster Ch 2)

 Approach to designing parallel algorithms
 Many problems have several possible parallel solutions

 SMP vs Cluster algorithms

 GPU vs CPU

 Foster proposes 4 stages

 Partitioning -- problem to "small tasks"

 Communication -- communications to allow task execution

 Agglomeration -- possible combining of tasks for improved performance ...

 Mapping -- assigning tasks to processors

 Design patterns (Not in Foster)

 Divide and conquer / Recursion

 Others talked about in previous slices (CAB, pipeline, task graph, work pool...)

 Partitioning

 Domain Decomposition (Data parallel)

 Functional Decomposition (Pipeline, task group, ...)

 Avoid redundant computation if possible / redundant storage

 Solution scale?

 Parallel Algorith Design (Pg 2)

 Communication
 local communication with small tasks

 global communication

 looking for balance of communication / computation

 structured, static vs unstructured, dynamic

 Foster’s example: finite element methods, irregular objects or high resolution in areas

 asyncronous vs syncronous

 Agglomeration

 Review previous two stages

 May need to consider specific hardware here

 Different groupings provide different communication patterns

 e.g mapping trees to processing elements

 Increase of granularity / placement of data in tasks

 Avoiding communication

 Parallel Algorithm Design (Pg 3)

 Mapping -- "tasks" to processors
 quite "hardware" dependent ... although with Clusters as our primary tool now ...

 Big question is GPU vs CPU now

 load balancing

 recursive bisection (finite element work)

 local algorithms

 cyclic vs block -- best is algorithm dependent

 task scheduling

 not needed in some algorithms

 Manager/Worker -- various versions

 Task pool

 Termination detection

 Foster has a number of examples

 Atmosphere Model

 collection of PDEs and other equations

 9 point horizontal, 3 point vertical stencils

 Floorplan Optimization, VLSI

 Computational Chemistry

 4 deep nested loops (n^4!)

 Algorithms: (Grama Ch 8, Eijkhout Ch 6) Dense Matrix

 Some of these algorithms are scattered around the books ..

 Mapping of data (From Ch 3.4 ...)

 Partitioning methods (n x n array to PEs)
 Striped: row or column to one PE

 block: contiguous rows or columns

 cyclic: row1 -> pe1, row2 -> pe2, ...

 hybrid: combination of two

 Checkerboard:

 block: rectangular sub matrix

 cyclic: pe0 has (0,0), (0,4), (4,0), (4,4) ...

 Transpose

 Given A, n x n, A^T[i,j] = A[j,i]

 Data placement ?

 Communication pattern?

 May be all-to-all personal communication!

 Cluster vs SMP?

 How about p < n^2?

 Cost, speedup, efficiency, ... ?

 Matrix - vector multiplication (Special case of matrix matrix multiply!)

 A: n x n times B: n x 1 -> C: n x 1

 Sequential algorithm?
 Time O(n^2)

 Parallel?

 PRAM?

 n processors

 A: row striped

 B: in every processor / one per P -> broadcast

 C: one per P

 Time is O(n), O(n) processors (broadcast O(n))

 Speedup O(n). Cost O(n^2)

 < n processors?

 Store multiple rows per processor (n/p?)

 Matrix - vector (page 2)

 p = n^2 ?
 An element of A to each processor

 B and C placement?

 On the first row or column?

 On the diagonal?

 Column broadcast of B.

 Row summing for C.

 Times?

 mesh: O(n) cost: O(n^3)

 Hypercube: O(log n) cost : O(n^2 log n)

 On fewer than n^2 processors?

 Matrix - Matrix multiplication

 A: n x n times B: n x n => C: n x n
 Sequential algorithm?
 Time O(n^3)

 Simple Algorithm

 p=n^2

 Each processor has a single element of A and B

 All-to-all broadcast of Matrix A in each row

 All-to-all broadcast of Matrix B in each column

 P_i,j has A_i,0 ... A_i,sqrt(p) and B_0,j ... B_sqrt(p),j

 Can calculate C from that data.

 Issues

 Communication ?

 Computation

 n Multiplies, n-1 additions => n

 Storage:

 n^3 total across all processors

 Total time?

 p < n^2

 Block decomposition n/sqrt(p) x n/sqrt(p) per processor
 Issues

 Communication?

 Computation times?

 n^3/p

 Total time?

 Cannon’s Algorithm

 A Memory efficent algorithm for matrix multiply
 Basic did all communicate, then all compute
 Cannons does communicate & compute at same time
 Does mesh communication pattersn ... assumes an nxn mesh with end-around-connections

 Cannons basic algorithm:
 a) shift .. A in row left, B in column up

 row/col 0 by 0 places, row/col 1 by 1 place, ...

 b) for i gets 1 to n do

 compute C += A * B

 send A on row, B in col (right & down)

 All Cs are now complete.

 Time on a mesh?

 n^3/p + 2 * sqrt(p) * (t_s + t_w n^2/p)

 Memory?

 No extra memory required (may use a copy)

 Needs n^2/sqrt(p) memory for data

 Nelson’s Algorithm (Paper on Ubuntu systems in public/cs515)

 2x2 Matrix multiply -- Notice pattern

 Algorithm:
 Decomposition of nxn into 2x2 problems.

 Recursively solve 8 sub-problems

 Example:

 8 x 8 example

 time?

 Expansion to n^3 processors

 time?

 Reduction to less than n^2 processors

 DNS algorithm (Dekel, Nassimi, and Sahni)

 O(log n) time, O(n^3 / log n) processors

 Read it.

