
 OpenMP (following Matloff, chapter 4)

 Shared memory programming
 pthreads ... intro in CSCI 347, will not redo here.

 OpenMP ... the "de facto" standard in SM programming

 No multiple machines, need MPI with OpenMP for that!

 OpenMP basic concepts ...

 Included in C compilers

 Works out of the box on our linux systems for gcc

 Works for clang, (LLVM), but not on our systems right now

 constructs are done via #pragma ...

 #pragma must be first non-blank, can be indented

 Simple version (zach.c)

 #include <omp.h>

 #include <stdio.h>

 int main()

 {

 #pragma omp parallel for num_threads(4)

 for (int i = 1; i <= 10; i++) {

 int tid = omp_get_thread_num();

 printf("The thread %d executes i = %d\n", tid, i);

 }

 return 0;

 }

 OpemMP (page 2)

 Matloff example using Dijkstra’s algorithm for shortest paths
 from vertex 0 to all other vertices in a N-vertex undirected graph
 Algorithm

 Done = {0} # vertices checked so far

 NewDone = None # currently checked vertex

 NonDone = {1,2,...,N-1} # vertices not checked yet

 for J = 0 to N-1 Dist[J] = G(0,J) # initialize shortest-path lengths

 for Step = 1 to N-1

 find J such that Dist[J] is min among all J in NonDone

 transfer J from NonDone to Done

 NewDone = J

 for K = 1 to N-1

 if K is in NonDone

 # check if there is a shorter path from 0 to K through NewDone

 # than our best so far

 Dist[K] = min(Dist[K],Dist[NewDone]+G[NewDone,K])

 Parallel solution: parallize "find J" and "for K"

 OpenMP (Page 3)

 dijkstra.c (with modifications from Matloff’s book)
 double omp_get_wtime();

 Main function is run by the "master thread"

 #pragma omp parallel

 sets up threads including master for execution

 all threads run the code inside block

 me = opm_get_thread_num() -- gets thread number

 #pragma omp parallel before var decls -> thread local variables

 #pragma omp parallel after var decls -> global variables

 #pragma omp parallel private(x,y) makes x and y local

 Threads communicate via global variables

 #pragma omp single \n { block } -- executed by one thread

 nth and chunk are global

 #pragma omp barrier -- standard barrier

 #pragma omp critical -- critical section, one thread at a time

 #pragma omp parallel vs #pragma omp parallel for (zach1.c, zach2.c)

 OpenMp (Page4)

 More on the #pargma omp parallel for ...

 Modification to dijkstra: Replace call to "findmymin()" with

 mymd = largeint;
 #pragma omp for nowait
 for (i = 1; i < nv; i++) {
 if (notdone[i] && mind[i] < mymd) {
 mymd = ohd[i];
 mymv = i;
 }
 }
 Body of for is done independently by threads

 Order is not maintained, unpredictable order

 "nowait" does not put a barrier at the end of the for loop

 Nested loops

 int i, j;

 #pragma omp parallel for collapse(2)

 for (i = 0; i < 5; i++)

 for (j = 0; j < 5; j++)

 printf ("(%d,%d)\n", i, j);

 OpenMp (Page 5)

 default version of for: no specific thread does any specific loop
 Schedule can cause threads to take a "chunk" of the loops

 #pragma omp for schedule(static,<chunk>)

 chunk is the number of loop elements

 omp_set_schedule(omp_sched_static, <chunk>) -- runtime version

 export OMP_SCHEDULE="static,<chunk>" (bash version)

 chunk sizes: small -> lots of parallelism, may have high overhead

 large -> lower overhead, some threads may be idle (use guided ... see below)

 kinds of schedules

 static: iterations in chunks, assigned statically to threads

 threads run round robin, default is iterations/threads

 dynamic: iterations in chunks, chunks assigned dynamicallyN

 thread finishes, gets more work, default chunk is 1

 guided: similar to dynamic, but chunk size decreasing as work decreases

 OMP Reduction

 int z;
 ...
 #pragma omp for reduction(+:z)
 for (i = 0; i < n; i++) z+=x[i];
 Independent copies of z for each thread

 When loops are done, z’s from threads summed in an atomic manner

 + => only z summed, initial values of local z is 0

 * => product, initial values would be 1.

 More painful version

 int z, myz=0;

 ...

 #pragma omp for private(myz)

 for (i = 0; i < n; i++) myz += x[i];

 #prama omp critical

 { z += myz; }

 Eligable operators: (op, initial value)

 (+,0), (-,0), (*,1), (&,all 1s), (|,all 0s), (^,0), (&&,1), (||,0)	

 Read the example program "Mandelbrot Set" (pg 94-97)

 OMP Tasks

 Tasks to execute a block of code "at some time"
 A task gets one thread

 Can do a barrier to syncronize the tasks.

 Quicksort example ... ompqs.c

 #pragma omp single nowait

 required?

 Must be a taskwait at end of qs function

 Other things

 Atomic: May be faster than "critical" if just dealing with one var.

 #pragma omp atomic

 x += y;

 expecting x is global and y is thread local

 Flush: making sure a "global variable" gets sent to cache ...

 #pragma omp flush (x)

 other flush points

 barrier

 entry/exit to/from critical, ordered, parallel

 exit from parallel for, parallel sections, single

 And much more ... not in Matloff!

