OpenMP (following Matloff, chapter 4)

Shared memory programming
Opthreads ... intro in CSCI 347, will not redo here.
OO0penMP ... the "de facto" standard in SM programming
0 No multiple machines, need MPI with OpenMP for that!
OpenMP basic concepts ...
Olncluded in C compilers
0 Works out of the box on our linux systems for gcc
oWorksfor clang, (LLVM), but not on our systems right now
O constructs are done via#pragma....
O #pragma must be first non-blank, can be indented
O Simple version (zach.c)
#include <omp.h>
#include <stdio.h>
int main()
{
#pragma omp parallel for num_threads(4)
for (inti =1;i <=10; i++) {
int tid = omp_get_thread num();
printf("The thread %d executesi = %d\n", tid, i);

}
return O;

OpemMP (page 2)

Matloff example using Dijkstra’ s algorithm for shortest paths

from vertex O to al other verticesin aN-vertex undirected graph
OAlgorithm

Done = {0} # vertices checked so far

NewDone = None # currently checked vertex

NonDone ={1,2,...,N-1} # vertices not checked yet

for J=0to N-1 Dist[J] = G(0,J) # initialize shortest-path lengths

for Step =1to N-1

find J such that Dist[J] ismin among all Jin NonDone

transfer Jfrom NonDone to Done

NewDone=J

for K=1toN-1

if Kisin NonDone

check if there is a shorter path from 0 to K through NewDone
than our best so far
Dist[K] = min(Dist[K],DistfNewDone] +G[NewDone,K])

O Parallel solution: parallize"find J' and "for K"

OpenMP (Page 3)

dijkstra.c (with modifications from Matloff’ s book)
Odouble omp_get wtime();

OMain function is run by the "master thread"
O#pragma omp parallel
O sets up threads including master for execution
o all threads run the code inside block
Oome=opm_get thread num() -- gets thread number
O#pragmaomp parallel before var decls -> thread local variables
O#pragmaomp parallel after var decls -> global variables
O#pragmaomp paralel private(x,y) makes x and y local
O Threads communicate via global variables
O#pragmaomp single\n { block } -- executed by one thread
anth and chunk are global
O#pragmaomp barrier -- standard barrier
O#pragmaomp critical -- critical section, onethread at atime
O#pragmaomp parallel vs #pragma omp parallel for (zachl.c, zach2.c)

OpenMp (Paged)

More on the #pargma omp parallel for ...
Modification to dijkstra: Replace call to "findmymin()" with

mymd = largeint;
#pragma omp for nowait
for(i=1;i<nv;i++){
if (notdon€]i] & & mind[i] < mymd) {
mymd = ohdf[i];
mymv =1i;
}
}

OBody of for is done independently by threads
O Order is not maintained, unpredictable order
O"nowait" does not put abarrier at the end of the for loop

Nested loops
inti,j;
#pragma omp parallel for collapse(2)
for (i=0;i <5;i++)
for j =0;] <5; j++)
printf (*(%d,%d)\n", i, |);

OpenMp (Page 5)

O default version of for: no specific thread does any specific loop
O Schedule can cause threads to take a "chunk™ of the loops

O #pragma omp for schedul e(static,<chunk>)
o chunk is the number of loop elements
oomp_set schedule(omp_sched static, <chunk>) -- runtime version
Oexport OMP_SCHEDUL E="static,<chunk>" (bash version)
Ochunk sizes: small -> lots of parallelism, may have high overhead
Olarge -> lower overhead, some threads may be idle (use guided ... see below)
Okinds of schedules
Ostatic: iterations in chunks, assigned statically to threads
O threads run round robin, default is iterations/threads
Odynamic: iterations in chunks, chunks assigned dynamicallyN
Othread finishes, gets more work, default chunk is 1

Oguided: similar to dynamic, but chunk size decreasing as work decreases

OMP Reduction

Int z;

#pragma omp for reduction(+:z)

for (i =0;i <n; i++) z+=x[i];

O Independent copies of z for each thread

OWhen loops are done, z's from threads summed in an atomic manner
O+ => only z summed, initial values of local zis0O

O* => product, initial values would be 1.

More painful version

int z, myz=0;

#pragma omp for private(myz)

for (i =0; i <n;i++) myz +=X[i];

#prama omp critical

{z+=myz }

O Eligable operators: (op, initial value)
0(+,0), (-,0), (*,1), (&.al 1s), (|.al 0s), (*,0), (&&.,1), ([I,0)
0 Read the example program "Mandelbrot Set" (pg 94-97)

OMP Tasks

O Tasks to execute a block of code "at some time"
OA task gets one thread

0O Can do abarrier to syncronize the tasks.
O Quicksort example ... ompgs.c
O #pragma omp single nowait
Orequired?
O0Must be ataskwait at end of gs function

Other things
OAtomic: May be faster than "critical" if just dealing with one var.
#pragma omp atomic
X+=y;
O expecting x isglobal andy isthread local
OFlush: making sure a"global variable" gets sent to cache ...
a#pragma omp flush (x)
O other flush points
Obarrier
O entry/exit to/from critical, ordered, paralel

Oexit from parallel for, paralel sections, single

O0And much more ... not in Matloff!

