HTCondor + OpenMPI

Zach McGrew

Introductions

- I'm Zach McGrew
- "Computational Science Administrator"*
 - *Naming is one of those two really hard computer science problems...
 - Fun way of saying Cluster Admin
- WWU BS CS 2017
- WWU MS CS 2018
 - \circ ~ Phil Nelson advisor NetBSD RISC-V port

Side Note

Getting Help

- <u>https://cluster.cs.wwu.edu</u>
- Email: <u>csaw.support@wwu.edu</u>
- In Person : CF412

Cluster Overview

The Pools (or... Clusters)

- CSE Cluster (College)
- CSCI Cluster (us)
- CSCI-Lab (including the lab you're sitting in)
 - Extra rules required here, and no parallel universe (foreshadowing!)

Head Nodes (APs — Access Points)

- cse-head.cluster.cs.wwu.edu
- csci-head.cluster.cs.wwu.edu
- csci-lab-head.cs.wwu.edu
 - Note not part of the cluster.cs subdomain!

CSE Cluster (EPs — Execute Points)

- Comprised of 20 compute nodes
 - \circ many connected via InfiniBand (40Gb/s)
 - \circ $\;$ Hardware ages vary, but it's getting a bit old
 - Avoid running here, prefer the CSCI Cluster
- + 3 researcher purchased boxes (access allowed with preemption)

CSCI Cluster (EPs — Execute Points)

- Comprised of 8 compute nodes
 - \circ All connected via InfiniBand (100Gb/s)
 - \circ $\,$ Dual socket, 16 cores / 32 threads per processor
 - Linux treats this as "64 CPUs", HTCondor agrees
 - $\circ \quad 192 \; \mathrm{GB} \; \mathrm{RAM}$
- + 3 4-way GPU nodes (2080 Ti)
- + 3 8-way GPU nodes (2080 Ti)
- + 1 3-way H100 GPU node

CSCI Lab Cluster Pool (EPs — Execute Points)

- Comprised of all academic lab systems in the department
 - CF162
 - CF164
 - CF165
 - \circ CF167 (when it reopens)
 - CF405
 - CF420
 - KB307
 - KB311

HTCondor

HTCondor

- HTCondor controls everything in the cluster.
 - $\circ \quad \ \ \, More \ on \ this \ next$
- You can only log into an AP (csci-head), not any of the EPs.
 - You can get an interactive session via HTCondor though

WARNING

Warning

- Do not run things directly on the head node
 - $\circ \quad \text{Non-abusive text editors allowed} \\$
- No development tools installed here on purpose
 - No git, gcc, etc.
- <u>VSCode Remote not allowed here</u>

Connecting

- We'll be using csci-head.cluster.cs.wwu.edu
 - \circ ~ Login with your WWU Universal Account

\$ ssh csci-head.cluster.cs.wwu.edu

• Get an interactive session on an EP

condor_submit -i request_cpus=2 request_memory=2048 getenv=true

- -i Interactive job
- request_cpus Yes please
- request_memory In MB, suffix no longer allowed =(
 - Don't worry; Phil has you covered. Do math in bc
- getenv=true Keep all my environment variables
 - I need to know \$USER, \$HOME, \$PATH, etc.
 - \circ ~ Set this for interactive jobs, avoid for normal jobs

HTCondor job environment overview

- HTCondor will setup a cgroup to contain all of your processes
- Memory limits are "soft"
 - \circ ~ You can use more than you request, until someone else actually requests it and uses it
- It will also assign CPU affinity to limit you to the number of CPUs you requested.
 - Ex: You request 2 CPUs, but create 64 threads. You're gonna have a bad time.
 - Do not set CPU affinity via mpirun or your OpenMP code
- HTCondor will give you hints about your environment by setting environment variables automagically
 - \circ Sometimes helpful, sometimes not
- HTCondor will lie about some things.
 - \circ $\,$ Namely, /tmp and /var/tmp $\,$

Copy the example to your home directory

cp -r /cluster/academic/CSCI415/202520/mpi ~/

- MPI is available as module in our environment
 - $\circ \quad \text{module avail} \text{list the modules}$
 - $\circ \quad \text{module load } X \mathrm{load \ module } X$

- module load mpi
 - \circ ~ Now you have access to all the mpi* and ompi* commands and libraries

- This demo has a Makefile
 - And a build.sh which loads the mpi module, and then invokes make
 - \circ ~ For the lazy and forgetful, like myself

• make

 \circ *wait a sec or two while it compiles*

Test run

• Makefile also includes a run target

• make run

Back to the AP!

Submitting HTCondor Jobs

HTCondor Universes

- Vanilla
- Container
- Docker
- VM
- Java
- Parallel
- etc.

HTCondor Universes for MPI - Vanilla

- Copy executable to EP
- Start executable on EP
- Good luck!
 - \circ You got this
 - Probably?
- Runs on exactly one node
- Advantages
 - FAST!
 - For MPI, communication between processes happens via shared memory

HTCondor Universes for MPI - Parallel

- Allocate X number of requested slots matching your resource request
 - \circ May or may not be on multiple EPs
- Copy executable to allocated EPs
- Run same executable on all EPs at once
 - Wait... This seems... Bad?
- Good luck?!?!

HTCondor Universes for MPI - Parallel

- Advantages
 - Access to waaaaaay more cores and memory.
 - \circ $-100 \mathrm{Gb/s}$ transfers is pretty fast still...

- Disadvantages
 - \circ Requires coordination between various nodes, and some planning
 - \circ MPI's got your back on sending messages
 - \circ But who has MPI's back on knowing how and where to talk?

Wrapper scripts to save the day!

- In reality, neither of these universes really matter.
 - Choose the universe that fits your needs
 - Need quicker compute? Vanilla
 - Need more cores and memory? Parallel

• I took an awesome wrapper script written by Jason Patton of the HTCondor project and extended it to work in both universes.

• It also sets all the magic MPI settings you need to use the InfiniBand or shared memory when running on the local node in our cluster.

Vanilla Job Demo

Parallel Job Demo

HTCondor Cheatsheet

HTCondor Commands

• condor_submit

- condor_q
- condor_q -all
- condor_q -hold

• condor_rm

• condor_status

Logs

- STDERR from each EP is separate (logs/err.X)
- STDOUT is combined (logs/out.0 only useful one)
- Condor log is more useful for me, but you can read it too!
 - $\circ \quad {\rm Keeps \ track \ of \ resource \ usage}$
 - Where your job ran

Getting Help

- <u>https://cluster.cs.wwu.edu</u>
- Email: <u>csaw.support@wwu.edu</u>
- In Person : CF412