
 Processes (Chapt 3)
 

 Early computers: Load program into memory, run
  Only one program in memory at a time

  No sharing

  Program in total control of all elements of the machine

  No security ...

  (Assignment 1 does this on qemu/RISCV)
 

 Shared computers:

  Have multiple programs "running" at the same time

    called multiprogramming, sharing CPU

    With multi-CPU machines, concurrent processes

  A process shouldn’t "interfere" with others

  A process shouldn’t "see" unrelated processes (not always enforced)

  A group of processes should be allowed to "work together"



 Abstraction of process (task, job, ...)
 

  Even useful on single user systems (e.g. moble devices)
  Process consists of:

    executable file (program)

    "memory image"

      text, data, heap, stack

    CPU state
 

 Process "state"

  new: in the process of being created

  ready: ready to run, waiting on a CPU

  running: CPU actually running instructions

  waiting: "blocked" waiting an event 

  terminated: finished execution, not cleaned up
 

  process state transitions (Sect 3.1.2)



 Process Control Block
 

 Kernel Data Structure -- keeps track of a process: Process table of Process Control Blocks
  State (last slide)

  Program Counter (PC)

  CPU Registers 

  CPU Scheduling Information

  Memory Management Information

  Accounting Information (time used, PID, ...)

  I/O status information
 

 With threading: multiple state/PC/Regs/Scheduling per thread

  Why not Memory Management?

    Single memory image, multiple threads



 Process Scheduling
 

 What process (job) to run next?
  Kernel scheduler

    policy: which one runs next

    mechanism: switching processes (context switch)

  Queuing 

    Ready Queue: processes ready to run

    Device/Event Queues:  processes waiting on device/event

  Dispatch -- select a process for execution
 

 Scheduler:

  part of the OS that makes the policy decision

  small amount of code

  controls degree of multiprogramming (number of processes in memory)

  can have large impacts on system performance

    e.g. swapping -- moving entire processes memory image to disk

    I/O bound processes get selected first?

    Compute bound processes get selected first?

    Process Mix:  Priority vs Round Robin vs ...



 Process Creation
 

 Two Primary methods
  Clone (e.g. UNIX -- fork())

    copy a current process

    new process running same program

    running a new program is different system call  (exec())
 

  Create New (e.g. Windows -- NtCreateProcess())

    Creates process and specifies program at same system call

    Very little is "inherited" from "parent"

    Needs to specify a lot of things

    Harder to simulate Clone with "Create New"

      (Clone/exec can simulate Create New easily.)
 

 Parent (Process creator) options

  Continues to run concurrently with children

  Wait for child to die

    See code in book for UNIX and Windows versions



 Process Termination
 

  Directly calling a routine to "exit"
  An error was detected and system "kills" the child

  Parent (or other process) can request system to "kill" child
 

 Can a process become an orphan?

  UNIX -- Yes

  VMS -- No

    A process terminates => kill all children

  Windows -- Yes
 

 The first process ...

 UNIX -- "init" started first, pid of 1.

 Linux -- more recently started using a "systemd"



 Interprocess Communication
 

 Cooperating processes need to communicate ...
  Why cooperate?

    Information sharing

    Computational speedup

    Modularity

    Convenience
 

 Two primary models

  Shared Memory

  Message Passing
 

 Shared Memory systems

  System maps parts of both virtual memory space to same physical memory

  What is written by one process can be seen by all others sharing memory

  Brings up synchronization problems

    Producer and Consumer problem

    Unbounded buffer vs bounded buffer

  POSIX has specified a shared memory API



 Interprocess Communication (page 2)
 

 Message Passing Systems
  Pipes

  mail boxes

    rendezvous -- both process must be in code at same time

    buffered mail box -- asynchronous

  local sockets

  network sockets
 

 

 Read the book for specific examples and code



 Threads and Concurrency (Chapter 4)
 

 Thread is the "basic unit of CPU utilization" consisting of:
  CPU State

    Program Counter

    Registers

    Other information ... CPU dependent

  Stack

 Process Threads --

  Traditional Heavyweight

  Multi-threaded

    user level threads

    kernel level threads

 Why?

  Responsiveness

  Resource Sharing

  Economy

  Scalability

  Simulation

  Multi-core and systems with GPUs

    task parallel vs data parallel (MIMD vs SIMD)  (CSCI 415/515)



 Thread Models
 

  Many to one  (aka User Level Threads)
    Kernel knows about only one thread

    Library keeps track of threads

    Block a thread blocks entire process

    No concurrent running on a multi-processor

  One to one 

    Each user level thread has a kernel thread

    Blocking one thread does not block other threads

    Full concurrency on a multi-processor

    Expensive in kernel resources

  Many to Many (aka M:N model)

    Many user level threads

    Fewer kernel threads

    Not as expensive in kernel, still allows concurrency
 

 Thread programming --- User view ---  CS 347
 

 Review Amdahl’s Law (Sec 4.2.1) and "multicore programming"



 Thread Issues in the OS
 

  Explicit threading:  pthreads, windows threads, Java threads, ..
  Implicit threading:  OpenMP, Grand Central Dispatch (Apple), ...

    Both:  Chapel!

  fork() and exec(), fork() duplicate all threads?

  thread cancellation

    resource releasing

    cancellation points

  signal delivery

    to one thread vs to all threads

    Often, delivered to a thread not blocking signal

  thread pools

  thread specific data

    errno with concurrent system calls

    user level per thread data (i.e. global to thread)

 Read section 4.7



 Synchronization Tools (Chapter 6)  (Chapter 5 after this)
 

 Race Condition (Review from CS 347)
  Results depend on the order of execution of the threads/processes.

  Book discusses the bounded buffer problem
 

 Critical Section Solution (Requirements)

  Mutual exclusion -- no other process may be in critical section

  progress -- only processes wanting into critical section can participate in the selection of next process in critical section

  bounded waiting -- process gets critical section in a bounded manner
 

 Peterson’s software solution

  Turn based, two processes only (numbered 0 and 1)

  flag[i] = TRUE; turn = j; while (flag[j] && turn == j) /*spin*/

  << critical section >>

  flag[i] = FALSE;



 Synchronization Tools (page 2)
 

 Hardware Solution
  Test and set done atomically by hardware (there are others)

    If already set, still set.

         while (TestAndSet(&lock)) /* spin */;

         << critical section >>

         lock = 0;  /* or FALSE */

  Doesn’t solve bounded waiting ...

  Also does busy waiting (not that good to do)
 

 Mutexes -- a help for critical sections

  Mutex -> Mutual Exclusion

        mutex_lock(M)

        << critical section >>

        mutex_unlock(M)

  Usually have some initialization done on the mutex

  no contention, low contention, high contention



 Synchronization Tools (page 3)
 

 Semaphores:
  S is an integer

  wait(S) { while (S <= 0) /* wait */; S--; } 

  signal(S) { S++; }

  These need to be atomic

  (Original P (Wait) for proberen, and V (Signal) for verhogen in Dutch)

  Critical region solution:  Initialize S to 1

  wait(S); << critical Region >> ; signal(S)

    Still doesn’t solve busy waiting or bounded waiting

 Implementation to solve busy waiting and bounded waiting issues

  Semaphore:  struct { int value; struct process *list; }

         wait (semaphore *S)

            S->value --;

            if (S->value < 0) { add_to_list(self, S->list); block(); }

         signal (semaphore *S)

            S->value++;

            if (S->value <= 0) { p = removefirst(S->list); wakeup(p); }

  Solves busy waiting and with a simple queue, solves unbounded waiting

  Block() and Wakeup() requires "OS help", wait/signal run in mutual exclusion



 Synchronization Tools (page 4)
 

  Not used properly, semaphores can cause deadlocks
  P0:  wait(S); wait(Q); .... signal(S); signal(Q);

  P1:  wait(Q); wait(S); .... signal(Q); signal(S);

 Monitors:  Use of semaphores and mutexes can cause problems

  not using mutexes

  improper wait/signal sequences ...

 Desire of language designers to "help" .... yielded monitors

  High level language abstraction

  ADT: only one thread may be executing inside a monitor at a time

    shared data must be declared in the monitor

  Solves critical section, does not solve other issues

  Enter the "condition variable"

    Wait -- put on a queue to be signaled

    Signal -- if any process on the queue, let them run

      no process on the queue ... do nothing

      problem of signal and two processes running in monitor

      solution: signal and leave.

  C++ monitors?

 Other high level language constructs exist ... see Path Pascal

 Read:  sections 6.8 and 6.9
 



 Classic Problems of Synchronization (Chapter 7)
 

  Bounded Buffer Problem (aka Producer-Consumer Problem):  Fixed sized buffer: add(), remove()
    Semaphores can help here

  Readers-writers problem: shared database

    readers can run concurrently

    writers must have exclusive access

    writers can’t be locked out long 

      block more readers when a writer wants to write

    A monitor is a good implementation of this.

  Dining Philosophers
 

 Why talk about these issues?

  Synchronization within the kernel!

  Each OS has to build synchronization primitives

    Book talks about Windows and Linux

  POSIX defines mutexes, semaphores and condition variables

  Read the rest of chapter 7 ... won’t talk about it here  (7.4, 7.5) 

  Assignment 2 has you implementing synchronization problems



 CPU Scheduling (Chapter 5)
 

 Basic requirement -- CPU Switch  (aka dispatcher)
  a way to switch the CPU between processes

  Function (e.g. switch):

    saves current CPU state -> PCB of current process

    loads new CPU state <- PCB of new process

    common to save registers on process stack

    called from one "process", returns to next "process"
 

 Job with CPU bursts

  Compute and I/O waits

  "wasted time" in wait

  multiprogramming to make use of that wait time
 

 CPU Scheduler

  selects a process from the ready queue, does a switch

  ready queue may not be a true FIFO, e.g. processes may have priorities

  Nothing on the ready queue?

    Idle process  (wait for interrupt?)



 Kinds of scheduling
 

  Run to completion
    As long as the process needs the CPU, it gets it

    Interrupts, timers ... are processed, but not other user processes

    Processes can "yield" to others waiting

  Preemptive Scheduling

    OS may "take the CPU" away from a process

    Interrupts, timers get CPU back to OS

    OS may then not give CPU back to currently running process
 

 Scheduling criteria

  CPU Utilization -- keep CPU busy

  Throughput -- number of jobs finished

  Turnaround time -- time to completion for job

  Waiting time -- time spend waiting on the ready queue

  Response time -- on an interactive system 



 Scheduling algorithms
 

  First-Come, First Served
    Convoy effect -- all short jobs wait for big jobs
 

  Shortest-Job-First

    How to find out what is shortest?

      previous CPU burst(s)

      exponential average
 

  Priority Scheduling

    Problem: starvation

      Solution: aging ... over time increase priority
 

  Round Robin

    Time quantum:  use more -> preempted

    shorter times favor response time

    longer times favor getting more computing done



 Scheduling algorithms (page 2)
 

  Multilevel Queue Scheduling
    foreground and background queues 

      foreground 80% of CPU RR, background 20% FCFS

    priority levels

      Job class or "social level"  e.g. student processes lowest

    feedback back queues -- high priority, short quantum

      use a full quantum, drop to next priority
 

 What about scheduling for threads

  User Level Threads?

    Library has to schedule

    Library can be preemptive with signals

    Kernel only schedules the one kernel level thread



 Scheduling algorithms (page 3)
 

  Kernel Level Threads?
    Process A with many threads vs Process B with one thread

      Process based scheduling?

        process-contention scope (PCS)

      Thread based scheduling?

        system-contention scope (SCS)

        done by Windows, Solaris and Linux
 

  Multi-processor Scheduling?

    Assuming homogeneous processors

    Asymmetric multiprocessing

      One CPU is master, does all scheduling decisions

      Other CPUs just run user code

      No "multi-processing" in OS



 Scheduling algorithms (page 4)
 

 Symmetric  multiprocessing
  All CPUs run kernel code

  All CPUs make scheduling decisions

  Requires proper kernel thread coordination 

    don’t want same thread running on 2 or more CPUs.
 

 Processor Affinity

  Instruction and Data caches

    move thread to different CPU has to restart caching

  Possible special hardware on specific CPUs

  Multiple Layer Memory systems,  NUMA (Non-uniform Memory Access)

    Each CPU has fast link to some memory, slow to all other

  Hard affinity vs Soft Affinity



 Load Balancing
 

  SMP - typically not a problem
  Run Queue per CPU => some may be busy others not

  Push or Pull migration

  Migration vs Processor Affinity

    Migration defeats purpose of Affinity

  Larger MP systems ... e.g. MOSIX (now defunct)

    Multi-system vs just Multi-CPU: fork() and forget ...
 

 Multi-core processors Issues

  Single Data Path to Memory

  Memory Stall -- time CPU waits while accessing memory

  CPU schedules threads on cores

  Tries to overlap compute on one thread with memory stall on another thread
 

 Read sections 5.5.5 to end of chapter



 Deadlocks (Chapter 8)
 

 multiprogramming environment: several processes may compete for a finite set of resources
 Typical idea:
  Request a resource, if not available, wait for it.

  No progress if resource is not available

 Problem:

  Proc A:  Holds R1,  Waits on R2

  Proc B:  Holds R2,  Waits on R1

  Deadlock!
 

 Typical Resource use:

  Request : Use : Release

    e.g. scanner
 

 Deadlock conditions

  Mutual exclusion

  Hold and wait

  No preemption

  Circular wait



 Deadlock (page 2)
 

 Resource-Allocation graph can help one understand deadlock
  Set P -- Processes

  Set R -- Resources

  Directed Edges:

    R_i -> P_j -- P_j holds resource R_i

    P_i -> R_j -- P_i is waiting on R_j
 

  Cycle in a allocation graph => deadlock
 

 Handling Deadlocks

  Ostrich method

  Deadlock Prevention

  Deadlock Avoidance

  Deadlock Detection
 

 Ostrich method ?

  UNIX uses it!



 Deadlock Prevention
 

 Break one of the necessary conditions
  Mutual Exclusion?

    Can’t ignore, there are sharable resources (e.g. read-only file)

    Mutex lock -- protecting a read/write sharable resource

  Hold and Wait?

    Request ALL at beginning?

    Request when not holding?

    Low resource utilization and possible starvation

  Preemption?

    Take away a resource from a process to give to another

      CPU?  -- works well

      Printer? -- not so good

  Circular Wait? 

    Request resources in the same order (R1, R2, ...)

    Request resources so we are not holding any higher number R
 

 Read about deadlock avoidance and recovery from deadlock .... we need to move on ...




