Processes (Chapt 3)

Early computers: Load program into memory, run
OOnly one program in memory at atime

ONo sharing

OProgram in total control of all elements of the machine
ONo security ...

O (Assignment 1 does this on gemu/RISCV)

Shared computers:
OHave multiple programs "running" at the same time
O called multiprogramming, sharing CPU
o With multi-CPU machines, concurrent processes
OA process shouldn't "interfere” with others
OA process shouldn’t "see" unrelated processes (not always enforced)
OA group of processes should be allowed to "work together"

Abstraction of process (task, job, ...)

O Even useful on single user systems (e.g. moble devices)
O Process consists of:

O executable file (program)
O0"memory image"

Otext, data, heap, stack
o CPU state

Process "state"
Onew: in the process of being created
Oready: ready to run, waiting on a CPU
Orunning: CPU actually running instructions
Owaiting: "blocked" waiting an event
Oterminated: finished execution, not cleaned up

O process state transitions (Sect 3.1.2)

Process Control Block

Kernel Data Structure -- keeps track of a process. Process table of Process Control Blocks
O State (last slide)

O Program Counter (PC)

OCPU Registers

0O CPU Scheduling Information

OMemory Management Information

O Accounting Information (time used, PID, ...)
O1/0 status information

With threading: multiple state/PC/Regs/Scheduling per thread
OWhy not Memory Management?

O Single memory image, multiple threads

Process Scheduling

What process (job) to run next?
OKernel scheduler

O policy: which one runs next

0 mechanism: switching processes (context switch)
OQueuing

0 Ready Queue: processes ready to run

o Device/Event Queues. processes waiting on device/event

O Dispatch -- select a process for execution

Scheduler:
Opart of the OS that makes the policy decision
Osmall amount of code
O controls degree of multiprogramming (number of processes in memory)
O can have large impacts on system performance
O e.g. Swapping -- moving entire processes memory image to disk
O 1/O bound processes get selected first?
0 Compute bound processes get selected first?

O Process Mix: Priority vs Round Robin vs...

Process Creation

Two Primary methods
O Clone (e.g. UNIX -- fork())

0 copy acurrent process
0 New Process running same program

Orunning anew program is different system call (exec())

O Create New (e.g. Windows -- NtCreateProcess())
O Creates process and specifies program at same system call
aVery littleis"inherited" from "parent”
O Needs to specify alot of things
O Harder to simulate Clone with "Create New"

O (Clone/exec can simulate Create New easily.)

Parent (Process creator) options
O Continues to run concurrently with children
OWait for child to die

O See code in book for UNIX and Windows versions

Process Termination

O Directly calling aroutine to "exit"
OAn error was detected and system "kills" the child

O Parent (or other process) can request system to "kill" child

Can a process become an orphan?
OUNIX -- Yes
OVMS-- No
O A process terminates => kill all children
OWindows -- Yes

Thefirst process ...
UNIX --"init" started first, pid of 1.

Linux -- more recently started using a " systemd"

I nterprocess Communication

Cooperating processes need to communicate ...
OWhy cooperate?
O Information sharing
o0 Computational speedup
o Modularity

o Convenience

Two primary models
0 Shared Memory
OMessage Passing

Shared Memory systems
O System maps parts of both virtual memory space to same physical memory
OWhat iswritten by one process can be seen by all others sharing memory
O Brings up synchronization problems
0 Producer and Consumer problem
0 Unbounded buffer vs bounded buffer
OPOSIX has specified a shared memory API

I nterprocess Communication (page 2)

Message Passing Systems

OPipes

Omail boxes
Orendezvous -- both process must be in code at same time
O buffered mail box -- asynchronous

Olocal sockets
O network sockets

Read the book for specific examples and code

Threads and Concurrency (Chapter 4)

Thread isthe "basic unit of CPU utilization" consisting of:
OCPU State

0 Program Counter
O Registers
O Other information ... CPU dependent
O Stack
Process Threads --
O Traditional Heavyweight
O Multi-threaded
Ouser level threads
Okernel level threads
Why?
O Responsiveness
O Resource Sharing
O Economy
O Scalability
O Simulation
OMulti-core and systems with GPUs
Otask parallel vsdataparalel (MIMD vs SIMD) (CSCI 415/515)

Thread Models

OMany to one (akaUser Level Threads)
oKernel knows about only one thread

OLibrary keeps track of threads

O Block athread blocks entire process

a0 No concurrent running on a multi-processor
OOneto one

O Each user level thread has a kernel thread

0 Blocking one thread does not block other threads

a Full concurrency on a multi-processor

O Expensive in kernel resources
OMany to Many (aka M:N model)

OMany user level threads

O Fewer kernel threads

O Not as expensive in kernel, still allows concurrency
Thread programming --- User view --- CS 347

Review Amdahl’s Law (Sec 4.2.1) and "multicore programming"

Thread Issues in the OS

O Explicit threading: pthreads, windows threads, Java threads, ..
almplicit threading: OpenMP, Grand Central Dispatch (Apple), ...

o Both: Chapel!
Ofork() and exec(), fork() duplicate all threads?
Othread cancellation

Oresource releasing

O cancellation points
Osignal delivery

Oto one thread vsto all threads

O Often, delivered to athread not blocking signal
Othread pools
Othread specific data

O errno with concurrent system calls

Ouser level per thread data (i.e. global to thread)

Read section 4.7

Synchronization Tools (Chapter 6) (Chapter 5 after this)

Race Condition (Review from CS 347)
O Results depend on the order of execution of the threads/processes.

OBook discusses the bounded buffer problem

Critical Section Solution (Requirements)
OMutual exclusion -- no other process may bein critical section
O progress -- only processes wanting into critical section can participate in the selection of next processin critical section

Obounded waiting -- process gets critical section in a bounded manner

Peterson’ s software solution
O Turn based, two processes only (numbered 0 and 1)
Oflag[i] = TRUE; turn = j; while (flag[j] && turn ==j) /*spin*/
O<< critical section >>
Oflag[i] = FALSE;

Synchronization Tools (page 2)

Hardware Solution
OTest and set done atomically by hardware (there are others)

Olf already set, still set.
while (TestAndSet(&lock)) /* spin */;
<< critical section >>
lock =0; /* or FALSE */
O Doesn’t solve bounded waiting ...
O Also does busy waiting (not that good to do)

Mutexes -- a help for critical sections
OMutex -> Mutual Exclusion
mutex_lock(M)
<< critical section >>
mutex_unlock(M)
O Usually have some initialization done on the mutex
O no contention, low contention, high contention

Synchronization Tools (page 3)

Semaphores:
dSisan integer
aOwait(S) { while (S<=0) /* wait */; S--; }
asigna(S) { St++; }
O These need to be atomic
O (Original P (Wait) for proberen, and V (Signal) for verhogen in Dutch)
O Critical region solution: Initialize Sto 1
Owait(S); << critical Region >> ; signal(S)
a Still doesn’t solve busy waiting or bounded waiting
I mplementation to solve busy waiting and bounded waiting issues
O Semaphore: struct { int value; struct process *list; }
wait (semaphore *S)
S>vaue--;
if (S>value<0){ add to list(self, S->list); block(); }
signa (semaphore *S)
S>valuet+;
if (S>vaue<=0){ p =removefirst(S->list); wakeup(p); }
O Solves busy waiting and with a simple queue, solves unbounded waiting
OBlock() and Wakeup() requires "OS help”, wait/signal run in mutual exclusion

Synchronization Tools (page 4)

O Not used properly, semaphores can cause deadlocks
aPo: wait(S); wait(Q); signal(S); signal(Q);
aPl: wait(Q); wait(S); signal(Q); signal(S);
Monitors: Use of semaphores and mutexes can cause problems
anot using mutexes
Oimproper wait/signal sequences ...
Desire of language designersto "help” yielded monitors
OHigh level language abstraction
OADT: only one thread may be executing inside a monitor at atime
O shared data must be declared in the monitor
O Solves critical section, does not solve other issues
O Enter the "condition variable"
O Wait -- put on a queue to be signaled
o Signal -- if any process on the queue, let them run
O no process on the queue ... do nothing
O problem of signal and two processes running in monitor
Osolution: signal and leave.
O C++ monitors?
Other high level language constructs exist ... see Path Pascal
Read: sections 6.8 and 6.9

Classic Problems of Synchronization (Chapter 7)

0 Bounded Buffer Problem (aka Producer-Consumer Problem): Fixed sized buffer: add(), remove()
a0 Semaphores can help here

O Readers-writers problem: shared database
O readers can run concurrently
Owriters must have exclusive access
owriters can't be locked out long
O block more readers when a writer wants to write
0 A monitor isagood implementation of this.

ad Dining Philosophers

Why talk about these issues?
O Synchronization within the kernel!
O Each OS has to build synchronization primitives
O Book talks about Windows and Linux
OPOSIX defines mutexes, semaphores and condition variables
ORead the rest of chapter 7 ... won't talk about it here (7.4, 7.5)

OAssignment 2 has you implementing synchronization problems

CPU Scheduling (Chapter 5)

Basic requirement -- CPU Switch (aka dispatcher)

Oaway to switch the CPU between processes

O Function (e.g. switch):
O saves current CPU state -> PCB of current process
Oloads new CPU state <- PCB of new process
0O common to save registers on process stack

O called from one "process’, returns to next "process’

Job with CPU bursts
O Compute and 1/0 waits
O"wasted time" in wait

O multiprogramming to make use of that wait time

CPU Scheduler
O selects a process from the ready queue, does a switch
Oready queue may not be atrue FIFO, e.g. processes may have priorities
O Nothing on the ready queue?

Oldle process (wait for interrupt?)

Kinds of scheduling

O Run to completion
O Aslong as the process needs the CPU, it getsit

O Interrupts, timers ... are processed, but not other user processes
O Processes can "yield" to others waiting
O Preemptive Scheduling
0 OS may "take the CPU" away from a process
O Interrupts, timers get CPU back to OS

0 OS may then not give CPU back to currently running process

Scheduling criteria
O CPU Utilization -- keep CPU busy
O Throughput -- number of jobs finished
O Turnaround time -- time to completion for job
OWaiting time -- time spend waiting on the ready queue
O Response time -- on an interactive system

Scheduling algorithms

O First-Come, First Served
a Convoy effect -- al short jobs wait for big jobs

O Shortest-Job-First
O How to find out what is shortest?
O previous CPU burst(s)

O exponential average

OPriority Scheduling
O Problem: starvation

O Solution: aging ... over time increase priority

ORound Robin
O Time quantum: use more -> preempted
O shorter times favor response time

O longer times favor getting more computing done

Scheduling algorithms (page 2)

O Multilevel Queue Scheduling

o foreground and background queues

oforeground 80% of CPU RR, background 20% FCFS
Opriority levels

OJob classor "social level" e.g. student processes lowest
O feedback back queues -- high priority, short quantum

Ouse afull quantum, drop to next priority

What about scheduling for threads
OUser Level Threads?
OLibrary hasto schedule
OLibrary can be preemptive with signals
oKernel only schedules the one kernel level thread

Scheduling algorithms (page 3)

OKernel Level Threads?
O Process A with many threads vs Process B with one thread

O Process based scheduling?

O process-contention scope (PCS)
O Thread based scheduling?

O system-contention scope (SCS)

O done by Windows, Solaris and Linux

O Multi-processor Scheduling?
O Assuming homogeneous processors
O Asymmetric multiprocessing
0 One CPU is master, does all scheduling decisions
0 Other CPUs just run user code
o No "multi-processing” in OS

Scheduling algorithms (page 4)

Symmetric multiprocessing
OAll CPUsrun kernel code

OAll CPUs make scheduling decisions
O Requires proper kernel thread coordination
Odon’t want same thread running on 2 or more CPUSs.

Processor Affinity
O Instruction and Data caches
omove thread to different CPU hasto restart caching
O Possible special hardware on specific CPUs
OMultiple Layer Memory systems, NUMA (Non-uniform Memory Access)
0 Each CPU hasfast link to some memory, slow to all other
OHard affinity vs Soft Affinity

LLoad Balancing

O SMP - typically not a problem
0 Run Queue per CPU => some may be busy others not

O Push or Pull migration

aMigration vs Processor Affinity
O Migration defeats purpose of Affinity

OLarger MP systems ... e.g. MOSIX (now defunct)
O Multi-system vs just Multi-CPU: fork() and forget ...

Multi-core processors I ssues
O Single Data Path to Memory
OMemory Stall -- time CPU waits while accessing memory
0O CPU schedules threads on cores
O Triesto overlap compute on one thread with memory stall on another thread

Read sections 5.5.5 to end of chapter

Deadlocks (Chapter 8)

multiprogramming environment: several processes may compete for afinite set of resources
Typical idea:

ORequest aresource, if not available, wait for it.

ONo progressif resource is not available
Problem:

OProc A: HoldsR1, Waitson R2

OProc B: HoldsR2, Waitson R1

O Deadlock!

Typical Resource use:
ORequest : Use: Release

Oe.g. scanner

Deadlock conditions
OMutual exclusion
OHold and wait
ONo preemption
aCircular wait

Deadlock (page 2)

Resource-Allocation graph can help one understand deadl ock
0O Set P -- Processes

O Set R -- Resources

O Directed Edges:
OR_i->P_j--P_j holdsresource R_i
aoP_i->R j--P_iiswatingonR_j

OCyclein aallocation graph => deadlock

Handling Deadlocks
O Ostrich method
O Deadlock Prevention
O Deadlock Avoidance
O Deadlock Detection

Ostrich method ?
OUNIX usesit!

Deadlock Prevention

Break one of the necessary conditions
OMutual Exclusion?

o Can't ignore, there are sharable resources (e.g. read-only file)
O Mutex lock -- protecting a read/write sharable resource
OHold and Wait?
ORequest ALL at beginning?
0 Request when not holding?
O Low resource utilization and possible starvation
O Preemption?
O Take away aresource from a process to give to another
oCPU? -- workswell
O Printer? -- not so good
dCircular Wait?
0 Request resources in the same order (R1, R2, ...)

0 Request resources so we are not holding any higher number R

Read about deadlock avoidance and recovery from deadlock we need to move on ...

