
 Processes (Chapt 3)

 Early computers: Load program into memory, run
 Only one program in memory at a time

 No sharing

 Program in total control of all elements of the machine

 No security ...

 (Assignment 1 does this on qemu/RISCV)

 Shared computers:

 Have multiple programs "running" at the same time

 called multiprogramming, sharing CPU

 With multi-CPU machines, concurrent processes

 A process shouldn’t "interfere" with others

 A process shouldn’t "see" unrelated processes (not always enforced)

 A group of processes should be allowed to "work together"

 Abstraction of process (task, job, ...)

 Even useful on single user systems (e.g. moble devices)
 Process consists of:

 executable file (program)

 "memory image"

 text, data, heap, stack

 CPU state

 Process "state"

 new: in the process of being created

 ready: ready to run, waiting on a CPU

 running: CPU actually running instructions

 waiting: "blocked" waiting an event

 terminated: finished execution, not cleaned up

 process state transitions (Sect 3.1.2)

 Process Control Block

 Kernel Data Structure -- keeps track of a process: Process table of Process Control Blocks
 State (last slide)

 Program Counter (PC)

 CPU Registers

 CPU Scheduling Information

 Memory Management Information

 Accounting Information (time used, PID, ...)

 I/O status information

 With threading: multiple state/PC/Regs/Scheduling per thread

 Why not Memory Management?

 Single memory image, multiple threads

 Process Scheduling

 What process (job) to run next?
 Kernel scheduler

 policy: which one runs next

 mechanism: switching processes (context switch)

 Queuing

 Ready Queue: processes ready to run

 Device/Event Queues: processes waiting on device/event

 Dispatch -- select a process for execution

 Scheduler:

 part of the OS that makes the policy decision

 small amount of code

 controls degree of multiprogramming (number of processes in memory)

 can have large impacts on system performance

 e.g. swapping -- moving entire processes memory image to disk

 I/O bound processes get selected first?

 Compute bound processes get selected first?

 Process Mix: Priority vs Round Robin vs ...

 Process Creation

 Two Primary methods
 Clone (e.g. UNIX -- fork())

 copy a current process

 new process running same program

 running a new program is different system call (exec())

 Create New (e.g. Windows -- NtCreateProcess())

 Creates process and specifies program at same system call

 Very little is "inherited" from "parent"

 Needs to specify a lot of things

 Harder to simulate Clone with "Create New"

 (Clone/exec can simulate Create New easily.)

 Parent (Process creator) options

 Continues to run concurrently with children

 Wait for child to die

 See code in book for UNIX and Windows versions

 Process Termination

 Directly calling a routine to "exit"
 An error was detected and system "kills" the child

 Parent (or other process) can request system to "kill" child

 Can a process become an orphan?

 UNIX -- Yes

 VMS -- No

 A process terminates => kill all children

 Windows -- Yes

 The first process ...

 UNIX -- "init" started first, pid of 1.

 Linux -- more recently started using a "systemd"

 Interprocess Communication

 Cooperating processes need to communicate ...
 Why cooperate?

 Information sharing

 Computational speedup

 Modularity

 Convenience

 Two primary models

 Shared Memory

 Message Passing

 Shared Memory systems

 System maps parts of both virtual memory space to same physical memory

 What is written by one process can be seen by all others sharing memory

 Brings up synchronization problems

 Producer and Consumer problem

 Unbounded buffer vs bounded buffer

 POSIX has specified a shared memory API

 Interprocess Communication (page 2)

 Message Passing Systems
 Pipes

 mail boxes

 rendezvous -- both process must be in code at same time

 buffered mail box -- asynchronous

 local sockets

 network sockets

 Read the book for specific examples and code

 Threads and Concurrency (Chapter 4)

 Thread is the "basic unit of CPU utilization" consisting of:
 CPU State

 Program Counter

 Registers

 Other information ... CPU dependent

 Stack

 Process Threads --

 Traditional Heavyweight

 Multi-threaded

 user level threads

 kernel level threads

 Why?

 Responsiveness

 Resource Sharing

 Economy

 Scalability

 Simulation

 Multi-core and systems with GPUs

 task parallel vs data parallel (MIMD vs SIMD) (CSCI 415/515)

 Thread Models

 Many to one (aka User Level Threads)
 Kernel knows about only one thread

 Library keeps track of threads

 Block a thread blocks entire process

 No concurrent running on a multi-processor

 One to one

 Each user level thread has a kernel thread

 Blocking one thread does not block other threads

 Full concurrency on a multi-processor

 Expensive in kernel resources

 Many to Many (aka M:N model)

 Many user level threads

 Fewer kernel threads

 Not as expensive in kernel, still allows concurrency

 Thread programming --- User view --- CS 347

 Review Amdahl’s Law (Sec 4.2.1) and "multicore programming"

 Thread Issues in the OS

 Explicit threading: pthreads, windows threads, Java threads, ..
 Implicit threading: OpenMP, Grand Central Dispatch (Apple), ...

 Both: Chapel!

 fork() and exec(), fork() duplicate all threads?

 thread cancellation

 resource releasing

 cancellation points

 signal delivery

 to one thread vs to all threads

 Often, delivered to a thread not blocking signal

 thread pools

 thread specific data

 errno with concurrent system calls

 user level per thread data (i.e. global to thread)

 Read section 4.7

 Synchronization Tools (Chapter 6) (Chapter 5 after this)

 Race Condition (Review from CS 347)
 Results depend on the order of execution of the threads/processes.

 Book discusses the bounded buffer problem

 Critical Section Solution (Requirements)

 Mutual exclusion -- no other process may be in critical section

 progress -- only processes wanting into critical section can participate in the selection of next process in critical section

 bounded waiting -- process gets critical section in a bounded manner

 Peterson’s software solution

 Turn based, two processes only (numbered 0 and 1)

 flag[i] = TRUE; turn = j; while (flag[j] && turn == j) /*spin*/

 << critical section >>

 flag[i] = FALSE;

 Synchronization Tools (page 2)

 Hardware Solution
 Test and set done atomically by hardware (there are others)

 If already set, still set.

 while (TestAndSet(&lock)) /* spin */;

 << critical section >>

 lock = 0; /* or FALSE */

 Doesn’t solve bounded waiting ...

 Also does busy waiting (not that good to do)

 Mutexes -- a help for critical sections

 Mutex -> Mutual Exclusion

 mutex_lock(M)

 << critical section >>

 mutex_unlock(M)

 Usually have some initialization done on the mutex

 no contention, low contention, high contention

 Synchronization Tools (page 3)

 Semaphores:
 S is an integer

 wait(S) { while (S <= 0) /* wait */; S--; }

 signal(S) { S++; }

 These need to be atomic

 (Original P (Wait) for proberen, and V (Signal) for verhogen in Dutch)

 Critical region solution: Initialize S to 1

 wait(S); << critical Region >> ; signal(S)

 Still doesn’t solve busy waiting or bounded waiting

 Implementation to solve busy waiting and bounded waiting issues

 Semaphore: struct { int value; struct process *list; }

 wait (semaphore *S)

 S->value --;

 if (S->value < 0) { add_to_list(self, S->list); block(); }

 signal (semaphore *S)

 S->value++;

 if (S->value <= 0) { p = removefirst(S->list); wakeup(p); }

 Solves busy waiting and with a simple queue, solves unbounded waiting

 Block() and Wakeup() requires "OS help", wait/signal run in mutual exclusion

 Synchronization Tools (page 4)

 Not used properly, semaphores can cause deadlocks
 P0: wait(S); wait(Q); signal(S); signal(Q);

 P1: wait(Q); wait(S); signal(Q); signal(S);

 Monitors: Use of semaphores and mutexes can cause problems

 not using mutexes

 improper wait/signal sequences ...

 Desire of language designers to "help" yielded monitors

 High level language abstraction

 ADT: only one thread may be executing inside a monitor at a time

 shared data must be declared in the monitor

 Solves critical section, does not solve other issues

 Enter the "condition variable"

 Wait -- put on a queue to be signaled

 Signal -- if any process on the queue, let them run

 no process on the queue ... do nothing

 problem of signal and two processes running in monitor

 solution: signal and leave.

 C++ monitors?

 Other high level language constructs exist ... see Path Pascal

 Read: sections 6.8 and 6.9

 Classic Problems of Synchronization (Chapter 7)

 Bounded Buffer Problem (aka Producer-Consumer Problem): Fixed sized buffer: add(), remove()
 Semaphores can help here

 Readers-writers problem: shared database

 readers can run concurrently

 writers must have exclusive access

 writers can’t be locked out long

 block more readers when a writer wants to write

 A monitor is a good implementation of this.

 Dining Philosophers

 Why talk about these issues?

 Synchronization within the kernel!

 Each OS has to build synchronization primitives

 Book talks about Windows and Linux

 POSIX defines mutexes, semaphores and condition variables

 Read the rest of chapter 7 ... won’t talk about it here (7.4, 7.5)

 Assignment 2 has you implementing synchronization problems

 CPU Scheduling (Chapter 5)

 Basic requirement -- CPU Switch (aka dispatcher)
 a way to switch the CPU between processes

 Function (e.g. switch):

 saves current CPU state -> PCB of current process

 loads new CPU state <- PCB of new process

 common to save registers on process stack

 called from one "process", returns to next "process"

 Job with CPU bursts

 Compute and I/O waits

 "wasted time" in wait

 multiprogramming to make use of that wait time

 CPU Scheduler

 selects a process from the ready queue, does a switch

 ready queue may not be a true FIFO, e.g. processes may have priorities

 Nothing on the ready queue?

 Idle process (wait for interrupt?)

 Kinds of scheduling

 Run to completion
 As long as the process needs the CPU, it gets it

 Interrupts, timers ... are processed, but not other user processes

 Processes can "yield" to others waiting

 Preemptive Scheduling

 OS may "take the CPU" away from a process

 Interrupts, timers get CPU back to OS

 OS may then not give CPU back to currently running process

 Scheduling criteria

 CPU Utilization -- keep CPU busy

 Throughput -- number of jobs finished

 Turnaround time -- time to completion for job

 Waiting time -- time spend waiting on the ready queue

 Response time -- on an interactive system

 Scheduling algorithms

 First-Come, First Served
 Convoy effect -- all short jobs wait for big jobs

 Shortest-Job-First

 How to find out what is shortest?

 previous CPU burst(s)

 exponential average

 Priority Scheduling

 Problem: starvation

 Solution: aging ... over time increase priority

 Round Robin

 Time quantum: use more -> preempted

 shorter times favor response time

 longer times favor getting more computing done

 Scheduling algorithms (page 2)

 Multilevel Queue Scheduling
 foreground and background queues

 foreground 80% of CPU RR, background 20% FCFS

 priority levels

 Job class or "social level" e.g. student processes lowest

 feedback back queues -- high priority, short quantum

 use a full quantum, drop to next priority

 What about scheduling for threads

 User Level Threads?

 Library has to schedule

 Library can be preemptive with signals

 Kernel only schedules the one kernel level thread

 Scheduling algorithms (page 3)

 Kernel Level Threads?
 Process A with many threads vs Process B with one thread

 Process based scheduling?

 process-contention scope (PCS)

 Thread based scheduling?

 system-contention scope (SCS)

 done by Windows, Solaris and Linux

 Multi-processor Scheduling?

 Assuming homogeneous processors

 Asymmetric multiprocessing

 One CPU is master, does all scheduling decisions

 Other CPUs just run user code

 No "multi-processing" in OS

 Scheduling algorithms (page 4)

 Symmetric multiprocessing
 All CPUs run kernel code

 All CPUs make scheduling decisions

 Requires proper kernel thread coordination

 don’t want same thread running on 2 or more CPUs.

 Processor Affinity

 Instruction and Data caches

 move thread to different CPU has to restart caching

 Possible special hardware on specific CPUs

 Multiple Layer Memory systems, NUMA (Non-uniform Memory Access)

 Each CPU has fast link to some memory, slow to all other

 Hard affinity vs Soft Affinity

 Load Balancing

 SMP - typically not a problem
 Run Queue per CPU => some may be busy others not

 Push or Pull migration

 Migration vs Processor Affinity

 Migration defeats purpose of Affinity

 Larger MP systems ... e.g. MOSIX (now defunct)

 Multi-system vs just Multi-CPU: fork() and forget ...

 Multi-core processors Issues

 Single Data Path to Memory

 Memory Stall -- time CPU waits while accessing memory

 CPU schedules threads on cores

 Tries to overlap compute on one thread with memory stall on another thread

 Read sections 5.5.5 to end of chapter

 Deadlocks (Chapter 8)

 multiprogramming environment: several processes may compete for a finite set of resources
 Typical idea:
 Request a resource, if not available, wait for it.

 No progress if resource is not available

 Problem:

 Proc A: Holds R1, Waits on R2

 Proc B: Holds R2, Waits on R1

 Deadlock!

 Typical Resource use:

 Request : Use : Release

 e.g. scanner

 Deadlock conditions

 Mutual exclusion

 Hold and wait

 No preemption

 Circular wait

 Deadlock (page 2)

 Resource-Allocation graph can help one understand deadlock
 Set P -- Processes

 Set R -- Resources

 Directed Edges:

 R_i -> P_j -- P_j holds resource R_i

 P_i -> R_j -- P_i is waiting on R_j

 Cycle in a allocation graph => deadlock

 Handling Deadlocks

 Ostrich method

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

 Ostrich method ?

 UNIX uses it!

 Deadlock Prevention

 Break one of the necessary conditions
 Mutual Exclusion?

 Can’t ignore, there are sharable resources (e.g. read-only file)

 Mutex lock -- protecting a read/write sharable resource

 Hold and Wait?

 Request ALL at beginning?

 Request when not holding?

 Low resource utilization and possible starvation

 Preemption?

 Take away a resource from a process to give to another

 CPU? -- works well

 Printer? -- not so good

 Circular Wait?

 Request resources in the same order (R1, R2, ...)

 Request resources so we are not holding any higher number R

 Read about deadlock avoidance and recovery from deadlock we need to move on ...

