Other topics

Chapter 16 -- Security

A big deal for OSes
OlIgnoring network security which isreally the responsibility of the OS
O Security for the OS -- kinds of attacks
O breach of confidentiality -- unauthorized reading of data
O breach of integrity -- modification of data
O breach of availability -- resource not available
O theft of service -- unauthorized use of resources
Odenial of service -- fork bombs (minor) ...
O Attack methods
O masquerading
Oreplay attack -- replay of valid data ...
0 message modification
O man in the middle attack
O session hijacking

O privilege escalation

Security (page 2)

O Levels of security
aphysica
O network
O operating system
O application
O human

Application Level

OMalware and Trojan Horse programs
O Major problem of "free" programs on Internet
O not asmuch for open source programs

O Trap Door

OLogic Bomb

O Stack and Buffer Overflows, Code injection
O major source of privilege escalation
0 code run on the stack

Oexecvp("/bin/sh”,)

Security (page 3)

oViruses
afile

O boot

g macro

arootkit

O source code virus

0 polymorphic -- changes signature
Oencrypted

O stealth

Otunneling -- interrupt handler/device drivers
O multipartite -- various locations in the system
Oarmored -- hard to figure out what it does.

O ransomware -- encrypts data, ransom for unlock code

System and Network Threats

O Default install of an OS
O Many services enabled by default

OVery few services enabled by default
dworms -- 1988 internet worm, Robert Morris
O gets() buffer overflow, ...
0 Sobig worm, 2003, photo, target, MS windows
O Port Scanning -- find out what services are available
ODenial of Service -- various forms, network, CPU, ...
oDDOS -- Distributed denial -of-service attachks

Cryptography as a Security Tool (16.4)

O encryption -- aprimary tool for security
O passwords on UNIX, ...

O Symmetric Encryption: M =D _k(E_k(M))
O DES -- data-encryption standard, 64 bit value, 56 bit key
OTriple DES... 3keys: E k3(D_k2(E_k1(M)))
OAES -- 2001, keys of 128, 192, or 256 bits, 128-bit blocks
O Not good for long messages ...
OAsymmetric Encryption: RSA, public key/private key systems
O Authentication -- limiting potential senders
0 Also helps prove a message has not been modified
omd5, SHA-1, other hash functions can be authentication
Oaso digitial signatures, RSA alows anyone to verify signature
OKey Distribution
O Symmetric encryption requires key distribution
O reason for asymmetric encryption
O Still can have a man-in-the-middle attack
O Digitia certificates by atrusted, well known authority
O Implementation of Cryptography
O Multiple layers -- networking issues here
ORead 16.4.3 about TL S (Transport Layer Security)

User Authentication (16.5)

How do you know the user is alowed access?
O passwords

O How to store passwords
O Easy to guess passwords vs good passwords
O User or System Generated (X-machine at LLNL)
0 One time passwords and two-factor authentication
O Challenge / Response systems
OBiometrics
afingerprints
Orequire both afingerprint and a password
O face recognition?
Oear "print"?
O other?
Total security policy istypically beyond the OS
OOS can provide tools
O Organization must use tools
O People must have buy-in for a security policy to work
OMust be a"living document"

Security Defenses

Defending from attack, both external and internal
Odefense in depth -- many layers of defense are better than few

OV ulnerability Assessment:
O Risk assessment
Otest scripts vs source code
O Penetration testing
O network scans
ofile system scans
O process scans
oUS Gov ... only as secure as its most far reaching connection
OlIntrusion Detection
O honeypot -- to trap attackers
O monitoring of system ... has some similarity to penetration testing
OVirus Protection
g virus scanners
0 sandbox
0O Read remainder of chapter (16.6.5-16.8)

Protection (Ch 17)

<< not done, may return later >>

Virtual Machines/ Virtualization (Ch 18)

O Basic concept: make one machine appear as many (identical systems)
Orun two (or more) operating systems at the same time

Owant aminor performance penalty

O have some central, trusted manager

OPast Virtua Machines
olIBM mainframesin 1972 ...
aoVM370 -- provided several VMs
OEach VM usually ran asingle-user OS
o Not Quite Virtual Machines: p-machine, JavavM,

aCurrent VM like systems
O Hardware based systems (IBM LPARS, Oracle LDOM)
OVMMs -- software based VMM control, "below OS'
oVMware ESX, XenServer, SmartOS, MS HyperV (By windows)
aAll OSesrun "on top of" the hypervisor

O00One OSis normally controls the hypervisor

Current VM like systems (page 2)

O Applications that provide aVM for same architecture
aVirtual Box, VMWare workstation, parallels, gemu-*

aVirtual environment "inside the application”

0 Code runs at machine speed with hardware assist

OVM and guest must be same architecture (CPU)
O Paravirtualization -- guests know they aretalkingtoaVM

Oe.g. smplified Disk Driver module ...
O Programming environment virtualization: .net, JavavM, GNU bc, ...
O Emulators -- run a different machine than the host

O gemu-*, armware, spike(RISC-V)

0 Can emulate new architectures never built, e.g RISC-V (before it was built)
O Application Containment

OoBSD Jails, Solaris Zones, ...

Benefits of VMs

O Run multiple OSes
O Easy migration
0 Cloud computing
O OS experimentation
Basic tools
OTrap and emulate -- "guest" OS executes a privileged instruction
OBinary Tranglation ... e.g. someinstructions don'’t trap
O Specia hardware to support virtual machines, fast VM context switches

Read the rest of the chapter for more information

One use of virtualization

Isr.cmu.edu -- Internet suspend/resume project (mostly dead now)

O Mobile computing -- cuts “tight binding between PC state and PC hardware"
O Server -- adistributed FS and VM state storage
OClient runson aVM (minor slowdown is possible)
OClient host has VM & access to network
OUser authenticatesto VM server, runsaVM on client host
O Client host doesn’'t see anything other than encrypted files
OClient OS needsto allow | SR agent access to net and provide adevice
OUser OSrunson VM.
0 Can suspend VM, save to server
0 Go to different hardware, get state from server, continue
OISR agent doesn’t need to load ALL state from server
OMost recent work appears to stop Aug 25, 2015

Networks and Distributed Systems (Ch 19)

Distributed vs. Parallel
O Parallel, geographically close, same or highly cooperative OSes

O Distributed, geographically distant, different or low cooperative OSes
ONot hard and fast rules
O Amoeba -- A single OS that runs on a group of computerson aLAN
aofficially dead.
O Inferno -- Plan 9 based, last release March 28, 2015
OApplicationsin "Limbo" language, target for DisVM
O Dis code could easily be translated for host
O Produces a homogeneous environment accross multiple platforms
Why?
O Resource Sharing
O Computation Speedup
OReliability
0 Communication
O Multi-site systems

o Migration from large mainframes -> Network of Workstations

Distributed OS

o Two different world views
0 Each workstation has its own user base ... need to login on every machine

0 One login on distributed system, don’t know which machine you are using
Olssues
O Data migration
0 Computation migration
O Process migration
O Load balancing
0 Computation speedup
O Hardware preference
O Software preference
O Data access / Resource need
oKind of network -- LAN vs WAN
O naming -- somewhat solved by DNS
drouting -- static vs dynamic
0 Connection: circuit, message, packet ...

o Not going to do to much networking here ...

Robustnhess

O Failure Detection
O Reconfiguration

O Recovery from Failure
O Fault Tolerance

Scalability and Transparency
Ohow does the system scale to larger and larger systems
Odoes the "user" notice how big the system is?

Hadoop -- Open source map/reduce engine with a distributed FS
Ocurrently part of the Apache family
Odesigned to run on a cluster of commodity computers

Lustre -- parallel file system, lustre.org.
O Used on many high end HPC systems.

DCE/DFS -- not afull distributed OS, tools for distributed systems
O Remote Procedure Calls, Distributed Objects, Security, Web ...
ODFS essentially AFS with modifications

Distributed File Systems (19.6)

A method to share the same files across a distributed system
Ol ssues:

OModel? client/server vs peer-to-peer
O Naming of files
O location transparency
O location independence
oFilemigration
a Caching, block vs wholefile
awrite-through policy
O consistency
Oclient vs server updates to cache
O Replication, storing files on multiple servers/hosts
Oreplication coherence
Oreplication updating
O Semantics (see storage sides): UNIX, session, immutable shared file

Distributed File Systems (page 2)

AFS -- Andrew File System
OC/S model, read replica servers, one write server

Owhole file caching, session semantics
Oclient requires accessto at least one server to continue
OTypical Unix Name space:
O/afs/cs.cmu.edu/user/....
Coda -- Play AFS again with
OAll servers R/W, conflicts and resolution
O disconnected operation ... assume cacheis correct if can’'t contact server
Ohoarding in cache
NFS - Network File System
ONot atrue DFS
O Used to provide files across a collection of workstations
O Stateless vs. Stateful
ONFS (origina) uses UDP (NFS V4 is stateful, uses TCP)
O Server going down and back up doesn’t "kill" the connection

OVery littlelocal caching

Distributed Coordination (Not in current Text)

Previous versions of Silberschatz had thisinit. Slidesfrom 6e;
http://www.wiley.com/college/silberschatz6e/0471417432/dlides/pdf 2/mod17.2.pdf

Process Coordination across a distributed system
0 On a single machine (even multi-core) it is easy to determine the order of events

O Can get things like locks done "easily" on a distributed system?

Event ordering in a message passing situation
O Happened-Before Relation
OA and B are eventsin the same process, A --> B (A before B)
O A sending, B receiving amessage, A --> B
OTransitive: A -->B, B-->C,thenA -->C
O Notice dependence on messages for inter-process ordering.
OAlso, A --> A can never hold ... irreflexive, partial ordering

Event Ordering

O Implementation
O Each process has a "clock”

O Each "event" increments this clock

O Each message is tagged with this clock

olf messageM = <D, C> (D = data, C = clock) and C > local C
Oset local Cto C+1

O Total ordering by ordering eventsin process order if all Cs are the same

Mutual Exclusion in adistributed environment
Centralized Algorithm
0O One process becomes the " coordinator"
OMessages: request, reply, release
Oreply is not sent back until we can assure mutual exclusion
O Coordinator process dies?

O pick anew one, reconstruct the queue

Mutual Exclusion

Fully Distributed Algorithm
OMuch harder!

OUsing Ordering from above ...
O Entry on processi
0 sends message request(P_i, TS) to all processes (TS timestamp)
O A process receives the request sends back areply
aif not in acritical section
Oor when it completesits critical section
oor if waiting, compare TS in request with self request TS
Osendif request TS<sef TS
O0When replies from ALL processes are received, start CR

