
 Other topics

 Chapter 16 -- Security

 A big deal for OSes
 Ignoring network security which is really the responsibility of the OS

 Security for the OS -- kinds of attacks

 breach of confidentiality -- unauthorized reading of data

 breach of integrity -- modification of data

 breach of availability -- resource not available

 theft of service -- unauthorized use of resources

 denial of service -- fork bombs (minor) ...

 Attack methods

 masquerading

 replay attack -- replay of valid data ...

 message modification

 man in the middle attack

 session hijacking

 privilege escalation

 Security (page 2)

 Levels of security
 physical

 network

 operating system

 application

 human

 Application Level

 Malware and Trojan Horse programs

 Major problem of "free" programs on Internet

 not as much for open source programs

 Trap Door

 Logic Bomb

 Stack and Buffer Overflows, Code injection

 major source of privilege escalation

 code run on the stack

 execvp("/bin/sh",)

 Security (page 3)

 Viruses
 file

 boot

 macro

 rootkit

 source code virus

 polymorphic -- changes signature

 encrypted

 stealth

 tunneling -- interrupt handler/device drivers

 multipartite -- various locations in the system

 armored -- hard to figure out what it does.

 ransomware -- encrypts data, ransom for unlock code

 System and Network Threats

 Default install of an OS
 Many services enabled by default

 Very few services enabled by default

 worms -- 1988 internet worm, Robert Morris

 gets() buffer overflow, ...

 Sobig worm, 2003, photo, target, MS windows

 Port Scanning -- find out what services are available

 Denial of Service -- various forms, network, CPU, ...

 DDOS -- Distributed denial-of-service attachks

 Cryptography as a Security Tool (16.4)

 encryption -- a primary tool for security
 passwords on UNIX, ...

 Symmetric Encryption: M = D_k (E_k (M))

 DES -- data-encryption standard, 64 bit value, 56 bit key

 Triple DES ... 3 keys: E_k3(D_k2(E_k1(M)))

 AES -- 2001, keys of 128, 192, or 256 bits, 128-bit blocks

 Not good for long messages ...

 Asymmetric Encryption: RSA, public key/private key systems

 Authentication -- limiting potential senders

 Also helps prove a message has not been modified

 md5, SHA-1, other hash functions can be authentication

 also digitial signatures, RSA allows anyone to verify signature

 Key Distribution

 Symmetric encryption requires key distribution

 reason for asymmetric encryption

 Still can have a man-in-the-middle attack

 Digitial certificates by a trusted, well known authority

 Implementation of Cryptography

 Multiple layers -- networking issues here

 Read 16.4.3 about TLS (Transport Layer Security)

 User Authentication (16.5)

 How do you know the user is allowed access?
 passwords

 How to store passwords

 Easy to guess passwords vs good passwords

 User or System Generated (X-machine at LLNL)

 One time passwords and two-factor authentication

 Challenge / Response systems

 Biometrics

 fingerprints

 require both a fingerprint and a password

 face recognition?

 ear "print"?

 other?

 Total security policy is typically beyond the OS

 OS can provide tools

 Organization must use tools

 People must have buy-in for a security policy to work

 Must be a "living document"

 Security Defenses

 Defending from attack, both external and internal
 defense in depth -- many layers of defense are better than few

 Vulnerability Assessment:

 Risk assessment

 test scripts vs source code

 Penetration testing

 network scans

 file system scans

 process scans

 US Gov ... only as secure as its most far reaching connection

 Intrusion Detection

 honeypot -- to trap attackers

 monitoring of system ... has some similarity to penetration testing

 Virus Protection

 virus scanners

 sandbox

 Read remainder of chapter (16.6.5-16.8)

 Protection (Ch 17)

 << not done, may return later >>

 Virtual Machines / Virtualization (Ch 18)

 Basic concept: make one machine appear as many (identical systems)
 run two (or more) operating systems at the same time

 want a minor performance penalty

 have some central, trusted manager

 Past Virtual Machines

 IBM mainframes in 1972 ...

 VM370 -- provided several VMs

 Each VM usually ran a single-user OS

 Not Quite Virtual Machines: p-machine, JavaVM,

 Current VM like systems

 Hardware based systems (IBM LPARs, Oracle LDOM)

 VMMs -- software based VMM control, "below OS"

 VMware ESX, XenServer, SmartOS, MS HyperV (By windows)

 All OSes run "on top of" the hypervisor

 One OS is normally controls the hypervisor

 Current VM like systems (page 2)

 Applications that provide a VM for same architecture
 VirtualBox, VMWare workstation, parallels, qemu-*

 Virtual environment "inside the application"

 Code runs at machine speed with hardware assist

 VM and guest must be same architecture (CPU)

 Paravirtualization -- guests know they are talking to a VM

 e.g. simplified Disk Driver module ...

 Programming environment virtualization: .net, JavaVM, GNU bc, ...

 Emulators -- run a different machine than the host

 qemu-*, armware, spike(RISC-V)

 Can emulate new architectures never built, e.g RISC-V (before it was built)

 Application Containment

 BSD Jails, Solaris Zones, ...

 Benefits of VMs

 Run multiple OSes
 Easy migration

 Cloud computing

 OS experimentation

 Basic tools

 Trap and emulate -- "guest" OS executes a privileged instruction

 Binary Translation ... e.g. some instructions don’t trap

 Special hardware to support virtual machines, fast VM context switches

 Read the rest of the chapter for more information

 One use of virtualization

 isr.cmu.edu -- Internet suspend/resume project (mostly dead now)

 Mobile computing -- cuts "tight binding between PC state and PC hardware"

 Server -- a distributed FS and VM state storage

 Client runs on a VM (minor slowdown is possible)

 Client host has VM & access to network

 User authenticates to VM server, runs a VM on client host

 Client host doesn’t see anything other than encrypted files

 Client OS needs to allow ISR agent access to net and provide a device

 User OS runs on VM.

 Can suspend VM, save to server

 Go to different hardware, get state from server, continue

 ISR agent doesn’t need to load ALL state from server

 Most recent work appears to stop Aug 25, 2015

 Networks and Distributed Systems (Ch 19)

 Distributed vs. Parallel
 Parallel, geographically close, same or highly cooperative OSes

 Distributed, geographically distant, different or low cooperative OSes

 Not hard and fast rules

 Amoeba -- A single OS that runs on a group of computers on a LAN

 officially dead.

 Inferno -- Plan 9 based, last release March 28, 2015

 Applications in "Limbo" language, target for Dis VM

 Dis code could easily be translated for host

 Produces a homogeneous environment accross multiple platforms

 Why?

 Resource Sharing

 Computation Speedup

 Reliability

 Communication

 Multi-site systems

 Migration from large mainframes -> Network of Workstations

 Distributed OS

 Two different world views
 Each workstation has its own user base ... need to login on every machine

 One login on distributed system, don’t know which machine you are using

 Issues

 Data migration

 Computation migration

 Process migration

 Load balancing

 Computation speedup

 Hardware preference

 Software preference

 Data access / Resource need

 Kind of network -- LAN vs WAN

 naming -- somewhat solved by DNS

 routing -- static vs dynamic

 Connection: circuit, message, packet ...

 Not going to do to much networking here ...

 Robustness

 Failure Detection
 Reconfiguration

 Recovery from Failure

 Fault Tolerance

 Scalability and Transparency

 how does the system scale to larger and larger systems

 does the "user" notice how big the system is?

 Hadoop -- Open source map/reduce engine with a distributed FS

 currently part of the Apache family

 designed to run on a cluster of commodity computers

 Lustre -- parallel file system, lustre.org.

 Used on many high end HPC systems.

 DCE/DFS -- not a full distributed OS, tools for distributed systems

 Remote Procedure Calls, Distributed Objects, Security, Web ...

 DFS essentially AFS with modifications

 Distributed File Systems (19.6)

 A method to share the same files across a distributed system
 Issues:

 Model? client/server vs peer-to-peer

 Naming of files

 location transparency

 location independence

 File migration

 Caching, block vs whole file

 write-through policy

 consistency

 client vs server updates to cache

 Replication, storing files on multiple servers/hosts

 replication coherence

 replication updating

 Semantics (see storage slides): UNIX, session, immutable shared file

 Distributed File Systems (page 2)

 AFS -- Andrew File System
 C/S model, read replica servers, one write server

 whole file caching, session semantics

 client requires access to at least one server to continue

 Typical Unix Name space:

 /afs/cs.cmu.edu/user/....

 Coda -- Play AFS again with

 All servers R/W, conflicts and resolution

 disconnected operation ... assume cache is correct if can’t contact server

 hoarding in cache

 NFS - Network File System

 Not a true DFS

 Used to provide files across a collection of workstations

 Stateless vs. Stateful

 NFS (original) uses UDP (NFS V4 is stateful, uses TCP)

 Server going down and back up doesn’t "kill" the connection

 Very little local caching

 Distributed Coordination (Not in current Text)

 Previous versions of Silberschatz had this in it. Slides from 6e:
 http://www.wiley.com/college/silberschatz6e/0471417432/slides/pdf2/mod17.2.pdf

 Process Coordination across a distributed system
 On a single machine (even multi-core) it is easy to determine the order of events

 Can get things like locks done "easily" on a distributed system?

 Event ordering in a message passing situation

 Happened-Before Relation

 A and B are events in the same process, A --> B (A before B)

 A sending, B receiving a message, A --> B

 Transitive: A --> B, B --> C, then A --> C

 Notice dependence on messages for inter-process ordering.

 Also, A --> A can never hold ... irreflexive, partial ordering

 Event Ordering

 Implementation
 Each process has a "clock"

 Each "event" increments this clock

 Each message is tagged with this clock

 If message M = <D, C> (D = data, C = clock) and C > local C

 set local C to C+1

 Total ordering by ordering events in process order if all Cs are the same

 Mutual Exclusion in a distributed environment

 Centralized Algorithm

 One process becomes the "coordinator"

 Messages: request, reply, release

 reply is not sent back until we can assure mutual exclusion

 Coordinator process dies?

 pick a new one, reconstruct the queue

 Mutual Exclusion

 Fully Distributed Algorithm
 Much harder!

 Using Ordering from above ...

 Entry on process i

 sends message request(P_i, TS) to all processes (TS timestamp)

 A process receives the request sends back a reply

 if not in a critical section

 or when it completes its critical section

 or if waiting, compare TS in request with self request TS

 send if request TS < self TS

 When replies from ALL processes are received, start CR

