Memory Management (Chapter 9)

To improve CPU utilization in a multiprogramming environment
we need multiple programs in main memory at the same time.

Basic CPUs and Physical Memory

O CPU <-> cache <-> Physical memory
o CPU stall going to main memory
O cache speedups
OAddress Binding
O compiletime
O load time (relocatable code)
O execution time
Ological (CPU) vs physical (memory) addresses
oMMU -- changes logical into physical
O PIC (position independent code)
a0 Dynamic Linking and shared libraries
O0Needs PIC code
O Usually needs advanced hardware

O Protection from other processes, dynamic address control

Memory Management Techniques

Swapping

a Copying out memory to a"backing store"
O Early systems used "drum storage”
o Disk is used now, both rotating and solid state
O End of quantum, swap out while running another process.
O Larger memory means | ess swapping
O Thrashing -- spending most of time swapping
OMobile OSes don’t usually support swapping
O Give other applications memory warnings ...
Contiguous Memory Allocation
O Full memory footprint of programs stored contiguously
O Protection from other processes
OBase and limit registers (Kernel mode access only)
OMin and Max for current process
Oreal address vs base+offset
O Partition memory for processes
O Fixed sized partitions

O Variable sized partitions

Contiguous Memory Allocation (Page 2)

O Partition algorithms (variable sizes)
aFirst fit

OBest fit
OoWorst fit
O Fragmentation
Oexternal -- variable partitions
Ointernal -- fixed sized or blocked allocation

Paging -- a better solution

0 Non-contiguous memory allocation

O Uses special hardware to do address mapping

OBasic Method
O Physical memory -- divided up into equal sized frames
O Logical memory -- divided up into pages (same size as frames)
o MMU maps between logical memory (pages) to physical (frames)
O Page table: maps page to frame
0 Physical memory can have more frames than logical has pages

O page table changed between processes (kernel mode only)

Paging Hardware

oSimple MMU
O Pagetable: N entriesmapsto N pages

Oaddress. <page number><offset in page>
O Trandation: PT[page number] + offset => physical address
O Storage for page table?

O Registers -- specia set / process switch issues

oMemory -- switch pointer

Multi-level page tables

O Multi-level page tables: (32 bit x86 series, old NS 32532)
O Page size 4k, 32 bit addresses

01024 entries in each page table page
OVirtual Address
011-00: offset
021-12: entry B
031-22: entry A
O Register has a pointer to Table A (Page directory)
OEntry A: 1K entries pointing to entry B tables (Page Table)
O Entry B: 1K entries pointing to frames
OFilled out page tables ... 1025 4K pages. 4,198,400 bytes
O Page Table Entry format: bits 31-12, frame number,
0 11-7 unused (mostly), 6 dirty, 5 referenced, 4 cache disable
O 3 write-through, 2 user/supervisor, 1 R/W, 0valid

RISC-V Summary

oSV 32 -- very similar to 1386, 4K pages, 2 level page tables
01K entries per page table, 32 bits/entry

032 bit virtual address, 34 bit physical address (16G mem)
OVA: <10><10><12> PA: <14><10><12> or <24><12>
OANY PTE can be a"leaf"
04K page and a4M page (must be 4M aligned, super page)
OPTE format
OBits0 - 9 samefor all RISCV models
o0-V (valid) 1-R(read) 2- W (write) 3 - X (execute)
ORWX values: 0=> pointer to next level
01 - Read only, 3 - Read/Write, 4 - executeonly, 5- RX, 7- RWX
04 - U (leaf, availabe in user mode) 5- G (global .. in al maps)
06 - A (accessed) 7-D (dirty) (leaf only, may not be set by hardware)
08-9 - RSW (reserved for supervisor)
010-31 - PPN - Frame number (22 bits, matches 34 bit physical)
OAvailable only on the RISCV-32, not on the RISCV-64

More RISCV SV levels

oSV 39 -- Add another level, 3 levels total
oUsed by Toy OS (Smallest VM model in RISCV-64)

a Still 4k page size.
O Virtual addresses, 39 bits: <9><9><9><12>
O Physical addresses, 56 bits <44 frame no><12 offset>
04k base page, 64 bit entries -> 512 entries per page table
OANY PTE can bea"leaf", 4K, 2M (megapage), and 1G (gigapages) pages (aligned)
O PTE format:
00-9: sameas SV 32
010 - 53: PPN (frame number)
0 54-60: reserved (must be zero)
061-62: PBMT (Page-based Memory Types), 63 - N (reserved for future definitions)
aSV 48 -- Add ancther level, 4 levelstotal
048 bit logical: <9><9><9><9><12>, 56 bit physical
04k base page, 64 bit entires -> 512 entries per page table
Oany PTE can bea"leaf", 4k, 2M, 1G and 512G (terapage) pages. (aligned)
OSV 57 -- Add another level, 5 levels total
04k base page, 64 bit entires -> 512 entries per page table
Oany PTE can bea"leaf", 4k, 2M, 1G, 512G and 256 TiB (petapage) pages. (aligned)
ORef: https://riscv.org/specifications/privileged-isa pg 59

Other Large Page Tables

some 64 bit architectures use other techniques
O Hashed Page tables

OEntry: Virtual Address, Frame, chain address
O Size of table an issue
O Clustered page tables -- similar to hashed
O Each entry points to a cluster of pages
a8, 16, or 32 pages in cluster
0O makes smaller hash tables
O Inverted Page Tables (Ultra sparc, Power PC)
O Issue: regular page tables may take lots of memory (Full RV 39 page tables -- 1,075,843,072 bytes)
O Solution: frame table
O Entry: Process Id, Virtual Address/page
OVA: <processlD, Page #, offset>
Oinverted table is searched for <PID, Page#>
Oinverted table in associative memory or hash table
O harder to implement shared memory
Shared pages?
0i386/ns32532/RISCV methods
O hashed and inverted tables

Other hardware support for paging

Problem: Where to store page tables?
Oln special registers?
O Process switch requires one to rel oad registers
Oln memory?
0 Each memory reference needs to look up a page table entry
O satp (Supervisor Address Translation and Protection register)
0 Makes process switch much easier, one register
O double (or more) the time to access memory
O Solution to this ... TLB (Trandlation Look-aside buffer)
O High speed associative memory
O Stores <page number, frame number> pairs
OCan get it "invalidated" or "flushed"
OTLB set up by accessing a page table
O Fewer entries than total pages available
0 Sometimes TLB entries can be "wired down"
0 Some TLBs store <pid, page number, frame number>

O Can be used by multiple processes concurrently

Segmentation

Another twist of logical addresses to physical addresses
Oldea of various segments

Oe.g. Text, Global, Heap, Stack
O may expand memory by using unigque addresses for each segment
O e.g Often know when fetching instructions vs data
O 0OIld example: HP 3000, 63 text segments, 1 or 2 data segments
O Segments can help do shared libraries
o Allowed for larger memory space than 16bit addresses allowed
OMore recent example: 1A-32
OUp to 16K segments, each segment 4G
08K shared segments, 8K private segments
06 segment registers to allow a process to address multiple segments
afinal physical address, 32 bit

Odoesn’'t allow larger physical than logical spaces

Virtual Memory (Chapter 10)

Previous chapter
Omultiple processes in memory at the same time

O techniques to share main memory

O page table mechanisms

This chapter -- complete memory view for processes
O how to manage memory (by kernel) for processes
Basic requirement -- instructions/data must be in real memory to use them
Onot all data/instructions need to be in memory al the time
0 some unused code may never be needed
Ological memory may be larger than physical memory
oOldtimes... overlays
O Error cases may not be needed
0 Compl ete subsystems may be unused during a particular run
a0 Programmer allocates 100x100, user uses 10x10
OAllow placing of data/instructions in memory only if needed.
O Not all of all segments are mapped

O Allows more processes in main memory at the same time

Virtual Memory (page 2)

Virtual memory -- separation of logical (user) view from physical memory

O Programmer can program with alarge VM address
O Programmer can view it as linear and contiguous
O Paging hardware allows for "shared pages'

O Useto get shared libraries implemented

Demand paging
OA different kind of "swapping"
O Swapping?
O Save entire process memory to disk, reload to memory to run
O Demand paging can be a"lazy swapper"
O process doing thisis the "pager”
O Code (text) of program ison disk

0 Can allocate disk space for process "r/w memory" to be saved.

Demand paging (page 2)

Odon’'t load memory from disk until it is needed

OHow?

O Page fault => need page X

ofind page X on disk

Oload page X into memory

O update page table

Orerun instruction

Ousesthe valid bit in the page tables

Olarger page tables (multi-level) demand load page tables

Pure demand paging ...

O start program running without any pages in memory!
(New program & process)
O not cool ... there are known pages needed
Oinstructions at load position
Oinitial stack location
Oglobal data possibly
O performance is an issue for demand paging
Olevels of access. cache -> memory -> disk
Otimes? 10ns, 200ns, 8ms
O effective access time = (1-p)*ma + p* pft
O ma = memory access time (ignoring cache effects),
O pft = page fault time, p = fault probability 0<=p<=1
O Use ns (nano seconds)
Ooma= 200

Demand paging (page 3)

O Performance (continued)
a pft?
Otrap, context switch, call page fault function
aofind page, lookup disk file, schedule page load
Owait for page to be loaded
Oreturn from trap (context switch)
Oup to 8 ms (or more!)
atime = (1-p) * 200 + p * 8000000
[= 200 + 7999800*p
alf p=.001 (one out of 1000) => 8.2 microsec memory cycle!
0 10% performance degradation?
0220 > 200 + 7999800* p
020 > 7999800* p
O p < 0.0000025 (1in400000)

Process creation

Fork():

OHave arunning process with a complete memory image
O Options?
a0 Copy the entire memory space?
a0 Copy on write!
o On fork, turn al page entriesto R/O
OA process that gets a page fault due to write
O copy frame
O set each page table to point to adifferent one
O (Harder to do on inverted page tables)
O Processes share R/O pages
O Advantage of copy-on-write?
oDon’t copy and then throw away!
avfork()?
O suspend parent, let child run using parent’s memory
O child should immediately call exec().
o child change of memory will show up in parent!

Exec(): Keep current PCB and so forth, rebuild memory image

Demand Paging and Page Replacement

With demand paging comes something not as expensive as swapping ...
O page removal from frames when out of frames
O page fault -> need more memory
omemory isfull, need to reuse aframe
O take a page from some other process
o Dirty or clean page?
Oclean if possible
Odon’'t have to write it out
Odon’'t have to wait for it to be written
O Algorithm for selecting frame/page to throw out... (page replacement algorithms)
O most OSes have their own scheme but
Othere are standard algorithms to consider
aFIFO
O Issues?
O May throw out one you need soon
O Belady’ s anomaly -- more frames increase page fault rate in some cases

O Expect more page frames lower fault rate

Page Replacement (page 2)

0 Optimal Page replacement
o Always replace the page that will not be used for the longest period of time.

ODoesn't really exist
Trying to approximate the Optimal Page replacement algorithm
O Least recently used (LRU)
O page that has not been used for the longest
Oassume it will not be needed soon
Olocality of reference in code and data
OHow to implement?
O Hardware support is essential
a0 Counters -- add a memory reference counter to hardware
O Access to a page stores counter to that page table entry
0 Smallest counter in page table is LRU page
O Stack -- add a stack to the page table
0 Each memory access puts the current page on top of stack
O Entries are not alowed to be duplicated
O Entry at the bottom of stack is LRU page

Page Replacement (page 3)

O Problem?
O Few computers supply previous mentioned hardware support

OWhat do they provide?
O Referenced and Dirty Bits -- like RISCV
LRU approximation algorithms
O These algorithms assume that the referenced and dirty bits are cleared on load

O second-chance
OBasic algorithmisfifo
Owhen apage is selected, check reference bit
aif O, replace

Oif 1, add to end of fifo and clear reference bit

O enhanced second-chance
O use referenced and modified, use the pair (r,d)
a(0,0) not referenced, not modified, good choice
0(0,1) not referenced, modified, requires a page out also
0(1,0) referenced, not modified, may be used again
0(1,1) referenced, modified, most likely in active use, page out required
O replace the oldest in the lowest non-empty class first

LRU approximation algorithms (page 2)

O Additional-reference-bits
Okeep an extrainteger value for each page in memory (8 bits works)

Oat aregular interval shift reference bit into extrainteger at MSB
0100 ms agood time?
aright shift R -> extra_int, Isb (least significant bit) drops out
O clear the reference bit
O replace page with smallest extra integer
Ovary the number of bits
O extreme case of 1 bit => second-chance algorithm
OLFU - Least frequently used
O keep a count of the number of times the pageis used
O hardware counter?
areference bit?
asmall countsimply not frequently used
Olssue: Initial use page, not used later
O Solution: count aging
OMFU - most frequently used
Oideaisthat new pages just brought in have not been frequently used

Other paging related ideas

Page-Buffering

OKeep acollection of free frames -- the pool
O page fault -> select page to replace via algorithm
O get afree frame for new page, start read immediately
aif old frameisdirty, write it out, then add it back to the pool
Owant to keep a minimum number in the free frame pool
Oallows process to resume faster than a "write page, |oad page" operation
O Modification to improve "write times"
Owhen paging deviceisidle, select amodified frame to write out
aimproves the probability that the page is not dirty when selected for page out
O Another tweak -- pages in the free pool "remember” which page they contain
OA page fault for a page in the free pool requiresno I/O to restore
oworkswell with FIFO or second-chance

oworks with other paging algorithms

Frame Allocation

How should frames be allocated to processes?
OEqual alocation?

O Proportional allocation?

First ... minimum frame count?
OlInstruction length ... can it cross a page
O Data access.
0 number of memory locations per instruction
Oany indirection
ginfinite indirection?

alimit to 16 levels or so
Equal alocation: m frames, n processes, each gets m/n

Proportional alocation: frames needed total vs frames needed by all processes
OP_i_frames needed/total_frames needed * frames _available

Priority allocation: give more framesto high priority processes

Frame Allocation (page 2)

Global versus Local allocation
OProcessi gets a page fault

Olook only at pages owned by P_i? (local)

Olook at all possible frames? (global)
OGlobal -- a process can’'t control own fault rate
OLocal -- may not get access to unused memory

O large program spending lots of time in small part of program/data
OGlobal used most often

Non-uniform memory access issues
O Multi-CPU / Memory Module systems
O CPU access faster to some memory
O choose frames with minium latency

Thrashing

0 CPU utilization vs degree of multiprogramming
O At some point, increasing the load decreases the CPU utilization

O Happens more often in global replacement algorithms
O spend more time doing paging than CPU work
OLocality
Oaset of frames actively used together
Oaway to help quantify what pages should be in memory
Omay have several localities during the running of a program

odon’'t have enough pages for locality ... the process thrashes

Working Set Model
O Parameter: delta time -- working-set window
OVariesover time
O Find aworking set for each process
OKeep each frame allocation to working set
O Helps stop thrashing and increase CPU utilization
OMay be able to help detect working set via page fault rate

Memory Mapped Files and Shared Memory

Techniques using paging
OMemory Mapped Files
OMap file, don’t read in contents
OAccessto fileis viamemory "reference”
O Uses pager to get data into memory
O Automatic write back of "dirty pages"
a0 Allows multiple processes to use same file
0 CMU: Recoverable Virtua Memory (RVM)
O Build a data structure in memory
0 Copy goesto disk
0 Run program again, recover data structure
ONetBSD on small filesfor cp(1):
o mmap(source file); mmap(dest file); memmove(); close()...

Shared Memory
0O Use page tables, map same physical framesinto logical adr space of 2 or more processes
0 Can map as r/w or r/o pages
aSYSV API for shared memory

Kernel Memory and Allocation

Kernel memory is somewhat different than "user memory"
astill using from limited frame pool

OHardware may require contiguous memory, e.g. DMA buffers
0 Some OSes may not run in a paged mode
O How about a page fault while running in kernel mode?
g Error for most OSes.
0O Read about Buddy System ... not really that good
OTypical alocators
O subsystem allocates frames
omay hand out smaller chunks to other parts of the kernel
Olarge alocations may be integral number of frames, contiguous
OTypical OS
O on boot find free frames
ainitialize kernel memory allocation
Ouse "free frames' for both user pages and kernel allocation
Okernel alocation may interfere with user processes by grabbing frames

ONetBSD -- pmap component maps physical memory

Other issues

Prepaging -- Trying to predict page needs and get the page in memory before use

OMay do thisfor anewly exec()ed process and processes being swapped in.

O Possible problems. guessed wrong, too much prepaging

Page size?
O Often the hardware dictates page size
O Some machines offer several page sizes
asmall pages -> more efficient memory use (fragmentation)
O larger pages -> less paging

Otime required to read/write a given page

TLB reach
OTLB (Translation Lookaside Buffer)
OTLB reach -- amount of memory accessible from the TLB
Opage size* number of TLB entries
Owould like working set al from the TLB
0O Some architectures allow for multiple page sizes
Omeans TLB is partially managed by software

Other issues (page 2)

1/0O and frames
0 Common 1/0 technique, DMA (Direct Memory Access)

ODMA uses real memory addresses
OWhat if user buffer crosses a page boundary?
oDon’'t do DMA to user memory
0 OR Move pages to be contiguous
OLock (or pin) aframein memory for 1/O operation
OLock frames for kernel into memory
O00OSes don't like to generate page faults themsel ves!
Kernel access to user data:
ORISCV/Toy OS
O Virtua vs Real address
o Kernel running without mapping, user running with mapping
O Other machines/OSes x86, NetBSD/riscv, linux on RISCV
O kernel and user both mapped
O NetBSD: uiomove() function
O Boot time: start running at real addresses, switch to virtual
Read section 10.10

