Top Down Parsers (Chapter 5)

- Recursive Descent Parsers
 - Can be hand written (atl/0, Pascal-p4)
 - Can be "generated"

- Non-recursive predictive parsing
 - Table based PDA (Push Down Automata)
 - Usually generated tables
 - Table: $X \times a \to P$ (X -- nonterminal, a -- terminal)
 - $f(X, a) = P$ (P is a production)
 - Stack has what we expect to see:
 - top of stack is first expected
 - bottom of stack is last expected
 - Top Down finds a leftmost derivation
Predictive Parsing Algorithm (LL)

Stack <-- G$ # G is goal non-terminal, $ is bottom of stack, end of input
Input <-- w$
a <-- first token of w
repeat
 X <-- top of stack
 if X is a terminal
 if X = a
 pop X, a <-- next token, possible semantic action
 else
 error
 else
 if M[X,a] = X -> Y1 ... Yk then
 pop X, push Yk Yk-1 ... Y1 # Yk is pushed first, ...
 output X -> Y1 ... Yk, possible semantic action
 else
 error
 until X = $ (Stack is empty!)
If a is not EOF, error
Bottom up parsers (Shift reduce) (From chapter 6)

- Build tree from the bottom up
- Start with the leaves
- LR, operator Precedence
- Typically 2 tables
- Partial productions are on stack
- Finds a rightmost derivation (in reverse)
void shift_reduce_driver (void) {
 push (S0);
 T = scanner();
 while (TRUE) {
 S = top of stack;
 switch (action[S][T]) {
 case ERROR:
 handle_error();
 break;
 case ACCEPT:
 clean_up_and_finish();
 return;
 case SHIFT:
 push (go_to[S][T]);
 T = scanner();
 break;
 }
case REDUCE:
 i = production number for \(X \rightarrow X_1, X_2, \ldots X_n \);
 pop n symbols;
 S1 = top of stack;
 push (go_to[S1][X]);
 break;
}
Analysis of Grammars (From Chapter 4)

Both methods need to analyze grammars

Parser generators need to read grammars:
- terminal
- non-terminals (variables)
- start symbol
- productions
 - left hand side
 - length of right hand side
 - symbols on right hand side

Parser generators need to implement the following algorithms
Nullable non-terminals
A is nullable iff A =>* lambda

1) mark all A such that A -> lambda

2) mark all B such that B -> C1 ... Cn
 and C1 ... Cn are marked nullable

3) repeat 2 until until no more Bs can be marked

S -> A B | C
A -> a A | a
B -> b B | lambda
C -> c C | lambda
Follow and First sets

Follow(A) = set of terminal symbols that may follow A in some sentential form.

Follow(A) = \{ a in Terminals \mid S \Rightarrow^+ alpha A a beta \}
union (if S \Rightarrow^+ alpha A then \{ lambda \} else {})

First (alpha) = \{ a in Terminals \mid alpha \Rightarrow^* a beta \}
union (if alpha \Rightarrow^* lambda a then \{ lambda \} else {})

First is set of first terminals in some sentential form
(often applied to variables ...)

if \alpha = a \beta, First(\alpha) = \{a\}
if \alpha = A \beta, First(\alpha) =
 First(A) union (if A is nullable First(\beta) else {})
First (alpha)
let alpha = X1 ... Xn

if n = 0, return {lambda}
result <-- first[X1] - {lambda}
for (i = 2; i <= n; i++)
 if lambda in first[Xi-1]
 result <-- result union (first[Xi] - {lambda})
 else
 break

if (i == n+1 && lambda in first[Xn])
 result <-- result union {lambda}

return result
first[X] sets?

for all a in terminals set first[a] <-- {a}

for all A in variables
 if A -> lambda is a production
 first[A] <-- {lambda}
 else
 first[A] <-- { }

for all productions of the form A -> a beta
 first[A] <-- first[A] union {a}

do
 changes <-- false
 for all productions of the form A -> B beta
 first[A] <-- first[A] union First(B beta)
 if first[A] has changed, changes <-- true
 until no changes
Sample Grammar

p -> BEGIN stmts END
stmts -> stmt ";" stmts
stmts ->
stmt -> SSTMT
stmt -> BEGIN stmts END

first sets:

BEGIN: BEGIN
END: END
SSTMT: SSTMT
;: ;
p: BEGIN stmts: Lambda SSTMT BEGIN stmt: SSTMT BEGIN
Follow Set Algorithm

a) for A in Variables follow[A] <-- {}

b) follow[S] <-- {Lambda}

c) do
 changes <-- false
 for each production of the form A -> alpha B beta
 follow[B] <-- follow[B] union (First(beta) - {Lambda})
 if (Lambda in First(beta)) then
 follow[B] <-- follow[B] union follow[A]
 if (follow[B] has changed)
 changes <-- true
 end for
until no changes
Another example

1) S -> a S z
2) S -> A
3) A -> b A y
4) A -> B
5) A -> Lambda
6) B -> c B x
7) B -> m

first sets:
S: a b Lambda c m
A: b Lambda c m
B: c m

follow sets:
S: z Lambda
A: y z Lambda
B: x y z Lambda
Parser Generators

Top Down

- Given a "lookahead" token, predict the rule to push.
- Predict function ... know the difference between
 - A -> X1 Xn
 - A -> Y1 Yn

\[
\text{Predict (A -> X1 ... Xn) =}
\begin{align*}
\text{if } \lambda \text{ in First(X1 ... Xn) then} \\
(\text{First(X1 ... Xn)} - \{\lambda\}) \cup \text{follow[A]} \\
\text{else} \\
\text{First(X1 ... Xn)}
\end{align*}
\]

Predict sets must be disjoint for correct operation

Build the table: A x t using predict function

- A: row, col t, value is rule number predicted
- Table can be filled out rule by rule
Predict and Parse Table

1) \[S \rightarrow a \, S \, z \]

 a

2) \[S \rightarrow A \]

 b c m z

3) \[A \rightarrow b \, A \, y \]

 b

4) \[A \rightarrow B \]

 c m

5) \[A \rightarrow \text{Lambda} \]

 y z

6) \[B \rightarrow c \, B \, x \]

 c

7) \[B \rightarrow m \]

 m

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>m</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>