
 Storage Management

 Talked about Threads, Processes, and Memory
 Now for "slower memory", e.g. Disks (Chapter 11 Mass Storage Structures)
 "Disks" come in a variety of flavors ...
 RAM disk -- dedicate some ram to look like disk

 SSDs (Solid State Disks)

 Hard Disk -- Many Flavors

 Optical Disks

 Network "Disks"

 Magnetic Tape?

 Thumb drives

 Communications with these devices over a "BUS" (From Chapter 12)

 Parallel or Serial

 Advanced Technology Attachment (ATA, parallel)

 serial ATA (SATA, serial)

 universal serial bus (USB)

 fibre channel (FC)

 various flavors of "SCSI" (Small Computer System Interface)

 others

 Typical disks:

 Sector -- a single unit of read/write
 Head -- a device to physical read/write on the disk

 Platter -- a side of a disk on which a head reads/writes

 Arm -- device on which heads are mounted, moves in and out

 Cylinder -- all sectors addressable without moving the arm

 Rotational speed in RPM (rotations per minute)

 5400, 7200, 10000, 15000 RPM

 Interesting times:

 Transfer rate

 seek time

 rotational latency

 Typical operations:

 Seek to a cylinder

 Read/Write a sector, select platter and sector on the platter

 More recent (LBA): Read/Write logical disk sector, no seek involved

 Mass Storage

 Solid-State Disks
 nonvolatile memory used like a hard drive

 flash-memory (typically NAND semiconductors)

 Advantages?

 no moving parts, faster transfer, no seek time, less power

 Disadvantages?

 reads (fast) vs writes (slower), standard bus tech limits speed

 max of 100,000 writes (erase, rewrite), lifespan measured in "Drive Writes Per Day"

 (May use "wear leveling" algorithms, often implemented by the NVM controller.)

 LBA addressing is used, sometimes OS is told tracks/heads/... but they don’t exist

 SSD is starting to make rotating disks obsolete (10/2025 numbers from Amazon)

 2TB ssd about $100 - $180

 2TB rotating about $65 - $120

 8TB ssd $600 - $900

 8TB rotating $100 - $250

 16TB ssd $1,800, 20TB N/A

 18TB rotating $340, 22TB rotating $435

 Tape -- still used in some places

 Sequential structure, no random access

 Transfer speeds similar to disk when ready

 Mass Storage (page 2)

 Disk Structure for most modern disks:
 addressed as a large one-dimensional array of logical blocks

 logical block size some power of 2, 512 usually the smallest, 4K common

 bad block mapping makes it hard to map logical block to disk geometry

 recent disks -- use same linear size per sector

 longer tracks have more sectors

 drive speed changes as head moves in/out

 Disk Attachment -- Where is the disk
 Host-Attached storage

 "same box"

 High-end, Fibre channel (FC)

 multiple disks, multiple hosts

 Network-Attached storage

 NFS, CIFS, Andrew -- network based file systems (later)

 iSCSI -- SCSI over IP

 Cloud Storage

 Storage on someone else’s computer

 API based, WAN based access

 Storage Networks -- private networks not connected to internet

 Mass Storage (page 2)

 Host Attached Storage vs Network Attached Storage
 Network issues -- storage on network causes network traffic

 Storage Area Network -- e.g. storage devices on one NIC, LAN on another

 Disk Scheduling

 Idea that you have a "queue" of disk requests

 How to best schedule them

 Light load ... no issue

 Heavy load ... how to best schedule them

 FCFS scheduling

 Shortest seek time scheduling

 may cause starvation

 Scan algorithm

 AKA elevator algorithm

 Circular scan

 LOOK scheduling, look before moving the arm

 Other topics

 Things to read about
 disk formatting -- partitions, volumes

 bad block management

 Swap space management

 RAID (Redundant arrays of independent disks)

 making larger virtual disks by striping (RAID 0)

 Performance gains by parallelism

 No redundant bits

 making error correction/recovery by redundant disks

 RAID 1: mirrored disks

 RAID 2: Memory-style error-correcting codes (ECC)

 RAID 3, 4, 5, 6: other techniques ...

 Stable-Storage -- Information is never lost

 How to implement it?

 multiple storage devices

 NVRAM as a cache

 I/O Hardware (Chapter 12)

 OS is a hardware manager ... talked about CPU, Memory, Disks ...
 Other I/O Devices

 transmission device (network, bluetooth,...)

 human-interface devices (screen, keyboard mouse, audio, joystick)

 specialized: sensor and control, ... (large variety)

 Memory mapped I/O

 Address range communicates to devices, not real memory

 Device Control register

 Device Data Register

 Device Memory -- could be large

 Techniques for I/O

 Polling -- (assignment 1)

 Interrupt driven -

 Start operation, return to other stuff

 Interrupt from I/O device

 Interrupt processing needs to be fast

 DMA and interrupts

 Application I/O Interface

 Need an API for standard treatment of I/O devices
 Low level -- Device driver

 Interface between Kernel and device driver

 complete to deal with all devices

 Higher level -- user view may look like a "file"

 UNIX - device file, (/dev/...)

 Windows -- a device object ... that can be opened by file name

 Device characteristics

 character-stream vs block

 sequential vs random access

 synchronous vs asynchronous

 sharable vs dedicated

 speed of operation

 read/write properties

 no direct user interaction ... e.g. clocks and timers

 Unix: Block and Character Devices

 All devices look like a character device, some also look like a block device

 Interface is slightly different between the two

 Other devices: clocks, network, ...

 Ignore the rest of chapter 12, may come back later

 File Systems Interface (Chapter 13)

 File System -- an abstraction on top of storage
 Typical Services

 File abstraction

 File manipulation

 File protection

 Most visible service of OS

 Large code base in most OSes

 File abstraction

 Bag of bits?

 known content? (e.g. is .txt for OS or users?)

 By the OS?

 executable files

 By user land Tools?

 required

 File System Basics

 Standard attributes
 Name: (symbolic, human readable)

 Identifier: unique tag

 Type: system tag

 Location: where it is located on the storage

 Size: both logical and physical size (if different)

 Protection: who has what kind of access

 Time, date, user identification, ...

 File Operations

 Creation: Adding information

 Writing: adding information, file position pointer

 Reading: file position pointer also

 Deleting: removing information

 Truncating a file: removing information

 May be many other file management routines

 renaming, moving, status, ...

 Management of files in the kernel

 Open syscall: looking up information ... look up file only once
 Kernel keeps an "Open File Table" in the kernel

 Open syscall:

 lookup file in file system (could be expensive)

 "cache" information in the open file table

 return a "handle", some data to uniquely represent file

 Close syscall:

 done using the file, allow file to reclaim space

 Open and Close with shared files

 multiple applications may open file at the same time

 in systems with fork(), both processes have access to files

 Typically ... two levels of tables in this case

 Kernel wide "open file table"

 Per process "local file table" that points to open file table

 Kernel global open file table

 File pointer -- offset into file

 File-open count -- how many local file entries point here

 Information for file location on disk

 Access rights

 Local table: Open flags, pointer to global open file table

 Locks and File types

 Locks -- shared or exclusive
 shared read locks

 exclusive locks

 mandatory or advisory

 deadlock issues here

 File Types

 Kinds of data in files

 executable, text, scripts, DataBase,

 How does OS know what is in the file?

 file name ... extension (DOS, Windows)

 .cpp -- file type?

 C pre-processor input?

 .app ?

 OS X, extension on a directory!

 extra information?

 Mac: creator -- program that created a file

 File Types (page 2)

 know how to rebuild executable files? (TOPS 20)
 Used time information with source to executable

 Source changed, recompile before running

 UNIX?

 "magic" numbers to start off files

 file(1) command

 File Structure

 Executable ... OS needs to know structure to load file
 Toy OS: OpenFile::LoadExecutable, elf.h

 Other files?

 VMS -- knew structure of system files

 Problem?

 what if your app doesn’t want to use a known structure

 Text vs Data?

 Bag of bits?

 Mac -- Resource and Data "fork"

 Windows -- Multiple "streams" per file

 Internal structure

 Any kind of packing?

 Standard encoding?

 Line in a text file? NL, CR/NL, CR

 MPE/3000: text file, 80 character lines, all chars present

 Access Methods

 User level access to the file:
 Sequential (UNIX: read/write)

 "tape model"

 Sequential access

 Possibly do "skip +/-n records" (seek)

 Rewind

 Go to end

 (Tape model, multiple files per tape, double EOF => EOT)

 Direct (relative access) (UNIX: pread/pwrite)

 Each read/write includes "record" number

 Each number is a "relative record" number to start of file

 Should an OS provide both?

 How about sequential access using direct files?

 like UNIX: keep a file pointer

 How about direct access using sequential files?

 very bad!

 Access Methods (page 2)

 Other Access Methods?
 Hash table?

 e.g. Key/Data pairs as basic storage element

 Also can be stored by trees

 Index file -- keep keys, pointer to data

 IBM ISAM -- indexed sequential-access method

 two level of indexes to access file

 General Disk Structure

 File system may depend on storage
 RAM disk -- short life, temp file systems, simple structures

 Collection of disks -- long life, reliable, error protection, hot swapping

 Large disk, subdisks (minidisks, partitions, slices)

 Allows multiple kinds of file systems on one disk

 Special kinds of file systems?

 procfs -- a file system interface to "process manager"

 ZFS -- a "pool" based "general file system"

 coda, smb, afs, nfs ... -- network file systems

 Volume -- contains a FS.

 May be anywhere from part of a disk to multiple disks

 Directory overview

 Directory Operations
 lookup (search)

 add (create)

 delete

 list

 rename

 traverse the file system

 Directory Structures

 Single level directory
 RT-11, small disk

 Two level directory

 user/file -- top level contains no files

 Or volume:/user/file

 Tree structured directories

 current directory, absolute path, relative path

 Acyclic Graph structured

 Directory have just "links" to files or directories

 single file can appear in many directories

 General Graph structured

 Acyclic?

 Livermore Timesharing System ... full graph

 traversal algorithms had to detect cycles

 Data stored in Directory Entry

 Full information: e.g. DOS

 Pointer to full information: e.g. UNIX UFS

 Volume access

 Each file system is placed on a "volume"
 Multiple volumes to access, How?
 DOS/Windows (in USER space)

 volume ID

 path within that volume

 User needs to see the volume

 UNIX -- File System "mount"

 Associates a directory on one file system with the root of another

 System mounts one file system as "Root"

 Other file systems are mounted on directories of Root

 User does not need to see mounts

 User does not need to know file system types

 Automounting ...

 to the desktop (Mac)

 Windows?

 internally does mounts

 exposes volume via special "mounts"

 now allows full mounts

 File Sharing

 On the same OS with multiple users
 need protection and sharing to be considered

 what kinds of sharing

 read only sharing?

 read/write sharing?

 Remote file systems

 NFS, DFS, SMB, FTP -- different kinds of files

 (Some systems can "mount" remote files via ftp.)

 sshfs -- an integrated solution for ssh access to files

 Lots of issues in remote file systems -- not much here yet

 client-server fs peer-to-peer

 authentication systems ... distributed naming services ...

 larger number of failure modes

 File consistency

 How are files shared ... how do reads and writes interact

 Immutable-Shared-Files semantics

 Once shared, a file can never change

 Session Semantics

 File gets a "snapshot" at open

 Changes are not committed until close

 Changes are not visible unless opened after a close

 UNIX Semantics

 writes are visible immediately to any process with an open file

 allow processes to interfere with each other.

 Network file systems have done all 3.

 NFS -- UNIX

 AFS, Coda -- mostly session semantics

 (process on the same machine get UNIX semantics)

 SPRITE (Berkeley, very old) -- read only shared

 Protection

 reliability -- safe from physical damage
 protection -- safe from improper access
 Protection may depend of use of file system
 Operations to control: read, write, execute, append, delete, list, change attributes ..

 Possibly others ... rename, copy, create

 Special directories ...

 take and give directories at LLNL

 Approaches to access control

 Access Control Lists

 each file has a list of users and allowed operations

 not on the list? no access

 Drawback?

 Long lists

 Protection (page 2)

 Domain based access:
 Owner, Group, Universe

 Each file has protection for each domain

 Access checks user’s domain membership

 Drawback?

 Hard to select a single user

 Typical implementations

 Primary protection by domain

 Secondary protection by ACLs

 Examples:

 UNIX: primary protections: read, write, execute

 NT: full control, modify, read&execute, read, write, ...

 ACL "who" can be a domain or a user

 DOS: nothing!

 Variety of ways to set these:

 NT: typically a GUI

 Solaris: has both UNIX and ACL

 getfacl(1) and setfacl(1)

 Read 13.5 Memory-Mapped files ... we talked about them earlier

 File System Implementation (Chapt 14)

 Typically file systems are stored on disks of some kind ...
 They provide:
 rewrite: read data, modify, write back to same location (Not ZFS)

 random access to any block of data ... may take time

 Basic File Systems -- Typical hardware components

 Disk

 Device Driver -- knows how to control disk

 Basic File System -- uses Device Driver to operate, manages buffers, caches

 File-organization module -- knows about file structure

 Logical file system -- manages meta-data information

 meta-data -- data about the file, size, date, ...

 Management of open files ...

 Idea of a Virtual File system ...

 One interface to ALL file systems implemented by OS

 UNIX V-node

 All file systems implement same API for OS to use

 Core OS knows nothing about actual FS detail

 Best if implemented as a layers of "independent" subsystems

 File System Implemenation (page 2)

 FUSE -- more recent Abstraction ...
 Implementation of a file system in user space

 OS passes API calls to user space

 User space program (daemon) implements FS

 On Disk Structures Vs In Memory Structures

 On Disk:

 Total information to access all data

 In Memory:

 Caches of On Disk information

 Dynamic information:

 Mount information

 Open files and file pointers

 per-process information (file handle, file descriptor)

 Issue:

 Keeping data in memory in sync with disk

 partial writes to disk in case of OS failure

 Typical Disk Structures:

 Boot control "block" -- information needed by ROM/OS for boot
 Volume control "block" -- core information on FS

 UFS: superblock, NTFS: master file table

 Directory Formats

 FS block management structures

 File/Directory block management

 Directory Implementation

 Directory:
 Keeps names of files with method to lookup meta-data

 Simple Method: linear

 Fixed or variable sized entries

 Entry data depends on kind of FS

 Search time O(n), n number of entries

 Insert/Delete time?

 Hash table:

 O(1) search time, insert, delete time

 collision techniques?

 base hash table size

 dynamic issues hash tables

 Some kind of tree storage:

 trees in a linear file?

 Allocation methods

 Allocation of data blocks (sectors) for files

 Simple: Contiguous Allocation

 Define a linear ordering of sectors

 File starts at LBA (logical block address) X

 data contained in next Y blocks

 Issues?

 random access -- easy

 sequential access -- easy

 dynamic file size -- hard

 creating a new file, unknown space needs

 Start in largest block

 extending a file -- hard

 ends up with external fragmentation

 may need a de-fragmentation function

 Live or offline?

 Used by RT-11, PDP-11 computers

 Allocation methods (page 2)

 Linked Allocation
 directory/meta-data has first block address

 each block has a "next block" address in the block

 Issues?

 creating -- easy

 writing/extending -- easy

 sequential access -- easy, may take longer than contiguous

 random access -- hard

 ends up with internal fragmentation

 dynamic file size -- easy

 data in each sector is less than sector size

 reliability?

 data corrupted (link) => lose the remainder of file

 Doubly linked list?

 Store filename, block number?

 Allocation methods (page 3)

 FAT -- File allocation table (MSDOS, OS-2)
 array of block numbers, one for each data block on FS

 links are in the FAT, no loss of data on disk

 not allocated: 0 entry or on a free list

 Disk reads for FAT and file

 Allocation methods (page 3)

 Indexed allocation
 Block of "pointers to data blocks"

 Each file has its own index block

 Directory has pointer to index block

 Issues?

 Create, read, write, append, random access easy

 Run out of space in index block?

 Small files ... lots of wasted space in index block

 Small index blocks ... small files

 linked scheme, last entry in index block is to next index block

 multi-level index scheme, top level points to index blocks ...

 UNIX UFS combined method

 small index block, one level regular index block, 2 & 3 level ...

 FS Performance ... a major component of "system feels fast"

 FAT/NTFS systems -- De-fragmentation -> get files closer to contiguous

 Berkeley’s changes to UFS for FFS

 Allocate file in the same cylinder, not just contiguous

 Other disk related tweaks of which many are not valid any more

 Free-Space Management

 Free disk space management needs to be done
 Keep track of unallocated blocks

 May use unallocated blocks to help keep track

 Bit Vectors

 one bit per FS block

 0 allocated, 1 free

 Advantage

 compact

 ffs (find first set) instructions

 Disadvantage

 large bit maps (e.g. 1TB file system)

 ffs instructions need all bits in memory

 Linked List

 Either in the Disk Blocks or the FAT

 Advantage -- relative easy

 Disadvantage -- May be hard to allocate from same cylinder ...

 Free-Space Management (page 2)

 Counting (aka run length encoding)
 Free blocks usually come in groups

 Linked list has first block, number of blocks free

 Advantages

 An empty disk has one entry in the list.

 Disadvantages

 Turns into simple linked list after much use

 Space Maps

 Sun’s ZFS -- designed for a huge number of files

 Can include multiple file systems

 Meta Data I/O is of importance

 Divides space into meta-slabs each with a spacemap

 One spacemap easily fits into memory ... read, modify, write

 ZFS also depends on transaction processing and log file systems

 more later on log file systems

 TRIMing unused blocks

 NVM flash-based, writing is very slow

 Tell device a block is no longer in a file so it can be erased

 Management of free "lists" when rewrite is expensive

 Efficiency and Performance

 Disk is the major bottleneck in OSes.
 name lookups can be expensive

 space allocation can be costly

 Size of pointers to files => space used to store them

 16, 32, 64 bit pointers

 ZFS: 128 bit pointers

 reading and writing can cause system to slow down

 e.g. write a block, now need it again

 (page out, page fault is an example)

 Buffer cache

 Cache of Disk blocks Read/Written

 Page cache and FS cache VS Unified buffer cache

 LRU replacement algorithm in cache

 Synchronous vs Asynchronous writes

 Read Ahead for buffer management of read files

 File System Maintenance

 File de-fragmentation
 Why needed?

 Which FSes need this?

 File system consistency checker

 diskchk in DOS

 fsck in UNIX

 Make sure all structures are correct and complete

 Free inodes and Used inodes add up to total

 Free blocks and Used Blocks add up to total

 File meta-data matches reality (e.g. nlinks)

 All files (inodes) are reachable in directory tree

 (ToyFs needs a fsck program! or a check option to the toyfs program)

 Log-Structured File Systems

 DB style transactions as applied to file systems
 Tries to make sure that we never need to repair much

 Basic Idea

 Write to the "log" what will be done (e.g. metadata)

 Do what you said

 Write to log you have done it.

 Log can be a circular buffer of appropriate size

 At "recovery time" can see that a log entry was not finished

 Abort or reply entry

 Log writes are sequential and thus very fast

 Used in many file systems now, NTFS, LFS (BSD), ext3fs, FFS (BSD)

 Other types of things have been used to improve speed and reliability

 ZFS -- snapshot, never overwrites blocks, no FSCK ...

 Backups -- another way to preserve your FS data

 Full backups vs Incremental backups

 Read 14.8 (WAFL)

 File System Internals

 Kinds of file systems
 general-purpose -- files, directories -- on long term storage

 tmpfs -- a file system in main memory

 objfs -- a "virtual" file system, access to kernel symbols

 ctfs -- a virtual file system, "contract information"

 lofs -- a "loop back" file system

 procfs -- a virtual file system with system information, process information

 ufs, ffs, extXfs, zfs -- general purpose file systems

 File-System Mounting

 Toy Fs constructor -- read the first sector, get ready to use

 General term for that is mounting

 Mount point ... place to access the file system

 DOS/Windows:

 drive letter:\path\to\file

 UNIX/Linux:

 mount on a directory (usually empty, hides directory contents)

 mount various kinds of file systems

 Linux: gio allows users to mount smb file systems

