Storage Management

Talked about Threads, Processes, and Memory
Now for "slower memory", e.g. Disks (Chapter 11 Mass Storage Structures)

"Disks' comein avariety of flavors...
ORAM disk -- dedicate some ram to look like disk

O SSDs (Solid State Disks)
OHard Disk -- Many Flavors
OOptical Disks
ONetwork "Disks"
OMagnetic Tape?
O Thumb drives
O Communications with these devices over a"BUS" (From Chapter 12)
O Parallel or Serial
O Advanced Technology Attachment (ATA, parallel)
Oseria ATA (SATA, seria)
Ouniversal seria bus (USB)
afibre channel (FC)
ovarious flavors of "SCSI" (Small Computer System Interface)

Oothers....

Typical disks:

O Sector -- asingle unit of read/write
OHead -- adevice to physical read/write on the disk

O Platter -- aside of adisk on which a head reads/writes
OArm -- device on which heads are mounted, moves in and out
O Cylinder -- all sectors addressable without moving the arm
O Rotational speed in RPM (rotations per minute)
05400, 7200, 10000, 15000 RPM
O Interesting times:
O Transfer rate
O seek time
Orotational latency
Typical operations:
0O Seek to acylinder
0O Read/Write a sector, select platter and sector on the platter
OMorerecent (LBA): Read/Write logical disk sector, no seek involved

Mass Storage

Solid-State Disks

anonvolatile memory used like a hard drive
o flash-memory (typically NAND semiconductors)
O Advantages?
O0no moving parts, faster transfer, no seek time, less power
O Disadvantages?
Oreads (fast) vs writes (slower), standard bus tech limits speed
omax of 100,000 writes (erase, rewrite), lifespan measured in "Drive Writes Per Day"
O (May use "wear leveling" agorithms, often implemented by the NVM controller.)
OLBA addressing is used, sometimes OSistold tracks’heads/... but they don’t exist
O SSD is starting to make rotating disks obsolete (10/2025 numbers from Amazon)
02TB ssd about $100 - $180
0O 2TB rotating about $65 - $120
08TB ssd $600 - $900
O 8TB rotating $100 - $250
016TB ssd $1,800, 20TB N/A
0O 18TB rotating $340, 22TB rotating $435
Tape -- still used in some places
0O Sequentia structure, no random access
O Transfer speeds similar to disk when ready

Mass Storage (page 2)

Disk Structure for most modern disks:
Oaddressed as alarge one-dimensional array of logical blocks

Ological block size some power of 2, 512 usually the smallest, 4K common
Obad block mapping makes it hard to map logical block to disk geometry
Orecent disks -- use same linear size per sector

O longer tracks have more sectors

O drive speed changes as head moves in/out

Disk Attachment -- Where isthe disk

O Host-Attached storage
O "same box"
o High-end, Fibre channel (FC)
o multiple disks, multiple hosts
O Network-Attached storage
aNFS, CIFS, Andrew -- network based file systems (later)
aiSCSl -- SCSI over IP
OCloud Storage
O Storage on someone else’s computer
OAPI based, WAN based access
O Storage Networks -- private networks not connected to internet

Mass Storage (page 2)

Host Attached Storage vs Network Attached Storage
ONetwork issues -- storage on network causes network traffic

O Storage Area Network -- e.g. storage devices on one NIC, LAN on another

Disk Scheduling
Oldeathat you have a"queue" of disk requests
OHow to best schedule them
OLight load ... no issue
OHeavy load ... how to best schedule them
0 FCFS scheduling
O Shortest seek time scheduling
O may cause starvation
O Scan algorithm
OAKA elevator algorithm
o Circular scan

OLOOK scheduling, look before moving the arm

Other topics

Things to read about

Odisk formatting -- partitions, volumes
Obad block management
0O Swap space management
ORAID (Redundant arrays of independent disks)
aomaking larger virtual disks by striping (RAID 0)
O Performance gains by paralelism
o No redundant bits
o making error correction/recovery by redundant disks
ORAID 1: mirrored disks
ORAID 2: Memory-style error-correcting codes (ECC)
ORAID 3, 4, 5, 6: other techniques ...
O Stable-Storage -- Information is never lost
OHow to implement it?
O multiple storage devices
ONVRAM asacache

|/O Hardware (Chapter 12)

OS is ahardware manager ... talked about CPU, Memory, Disks...
O Other 1/0 Devices

O transmission device (network, bluetooth,...)
0 human-interface devices (screen, keyboard mouse, audio, joystick)

O specialized: sensor and control, ... (large variety)

aMemory mapped I/0
0 Address range communicates to devices, not real memory
0 Device Control register
O Device Data Register

a0 Device Memory -- could be large

OTechniquesfor I/O
o Polling -- (assignment 1)
O Interrupt driven -
O Start operation, return to other stuff
O Interrupt from 1/O device
O Interrupt processing needs to be fast
oDMA and interrupts

Application I/O Interface

O Need an API for standard treatment of 1/O devices
OLow level -- Device driver

O Interface between Kernel and device driver

o complete to deal with all devices
OHigher level -- user view may look like a"file"

OUNIX - devicefile, (/dev/...)

o Windows -- adevice object ... that can be opened by file name
O Device characteristics

O character-stream vs block

O sequential vs random access

0 synchronous vs asynchronous

O sharable vs dedicated

O speed of operation

O read/write properties

O no direct user interaction ... e.g. clocks and timers

OUnix: Block and Character Devices

O All deviceslook like a character device, some also ook like a block device

O Interface is dlightly different between the two
OOther devices: clocks, network, ...
Ignore the rest of chapter 12, may come back later

File Systems Interface (Chapter 13)

O File System -- an abstraction on top of storage
OTypical Services

O File abstraction
O File manipulation
O File protection
OMost visible service of OS
O Large code base in most OSes

File abstraction
OBag of bits?
Oknown content? (e.g. is .txt for OS or users?)
OBy the OS?
O executablefiles
OBy user land Tools?
Orequired

File System Basics

O Standard attributes
oName: (symbolic, human readable)

O ldentifier: unique tag

OType: system tag

OLocation: whereit islocated on the storage

O Size: both logical and physical size (if different)
O Protection: who has what kind of access

O Time, date, user identification, ...

File Operations

O Creation: Adding information

OWriting: adding information, file position pointer
OReading: file position pointer also

ODeleting: removing information

O Truncating afile: removing information

May be many other file management routines

drenaming, moving, status, ...

Management of filesin the kernel

0 Open syscall: looking up information ... look up file only once
OKernel kegps an "Open File Table" in the kernel
O Open syscall:
Olookup filein file system (could be expensive)
O "cache" information in the open file table
Oreturn a"handle", some datato uniquely represent file
OClose syscall:
Odone using the file, allow file to reclaim space
O Open and Close with shared files
o multiple applications may open file a the same time
ain systems with fork(), both processes have access to files
aTypicaly ... two levels of tablesin this case
oKernel wide "open file table"
O Per process "local file table" that points to open file table
oKernel global open file table
O File pointer -- offset into file
O File-open count -- how many local file entries point here
o lInformation for file location on disk
O Accessrights

OLocal table: Open flags, pointer to global open file table

Locks and File types

Locks -- shared or exclusive

O shared read locks
Oexclusive locks
Omandatory or advisory
Odeadlock issues here

File Types

OKinds of datain files
O executable, text, scripts, DataBase, ...
OHow does OS know what isin the file?
afile name ... extension (DOS, Windows)
a.cpp -- file type?
O C pre-processor input?
a.app ?
O0OS X, extension on a directory!
O extrainformation?
OMac: creator -- program that created afile

File Types (page 2)

0 know how to rebuild executable files? (TOPS 20)

0 Used time information with source to executable

O Source changed, recompile before running
OUNIX?

O0"magic" numbersto start off files

ofile(1) command

File Structure

O Executable ... OS needs to know structure to load file
O Toy OS: OpenFile::LoadExecutable, elf.h

O Other files?
OoVMS -- knew structure of system files
O Problem?
Owhat if your app doesn’t want to use a known structure
O Text vs Data?
O Bag of bits?
OMac -- Resource and Data "fork”
OWindows -- Multiple "streams’ per file

OInternal structure
aAny kind of packing?
O Standard encoding?
OLineinatext file? NL, CR/NL, CR
0 MPE/3000: text file, 80 character lines, all chars present

Access Methods

User level accessto thefile:
OSequential (UNIX: read/write)

O "tape model"
O Sequential access
O Possibly do "skip +/-n records" (seek)
ORewind
oGotoend
a(Tape model, multiple files per tape, double EOF => EQOT)

ODirect (relative access) (UNIX: pread/pwrite)
0O Each read/write includes "record” number

O Each number isa"relative record" number to start of file

0O Should an OS provide both?
O How about sequential access using direct files?
Olike UNIX: keep afile pointer
O How about direct access using sequential files?
avery bad!

Access Methods (page 2)

Other Access Methods?
O Hash table?

Oeg. Key/Datapairs as basic storage element
O Also can be stored by trees
OlIndex file -- keep keys, pointer to data
OlIBM ISAM -- indexed sequential-access method

aotwo level of indexesto access file

General Disk Structure

File system may depend on storage
ORAM disk -- short life, temp file systems, simple structures
O Collection of disks-- long life, reliable, error protection, hot swapping
OLarge disk, subdisks (minidisks, partitions, dlices)
o Allows multiple kinds of file systems on one disk
O Specia kinds of file systems?
O procfs -- afile system interface to "process manager"
OZFS -- a"pool" based "general file system"
Ocoda, smb, afs, nfs.... -- network file systems
OVolume -- containsaFS.
O May be anywhere from part of a disk to multiple disks

Directory overview

O Directory Operations
alookup (search)

O add (create)
Odelete

alist

O rename

Otraverse the file system

Directory Structures

Single level directory
ORT-11, small disk

Two level directory

Ouser/file -- top level contains no files

O Or volume:/user/file
Tree structured directories

Ocurrent directory, absolute path, relative path
Acyclic Graph structured

ODirectory have just "links" to files or directories

asingle file can appear in many directories
General Graph structured

OAcyclic?

O Livermore Timesharing System ... full graph

Otraversal algorithms had to detect cycles

Data stored in Directory Entry
aFull information: e.g. DOS
O Pointer to full information: e.g. UNIX UFS

V olume access

Each file system is placed on a"volume"

Multiple volumes to access, How?
ODOS/Windows (in USER space)

avolume D
O path within that volume
O User needs to see the volume
OUNIX -- File System "mount"
O Associates a directory on one file system with the root of another
O System mounts one file system as "Root"
O Other file systems are mounted on directories of Root
O User does not need to see mounts
O User does not need to know file system types
O Automounting ...
Oto the desktop (Mac)
o Windows?
ginternally does mounts
O exposes volume via special "mounts’

o now allows full mounts

File Sharing

On the same OS with multiple users
O need protection and sharing to be considered

Owhat kinds of sharing
Oread only sharing?
O read/write sharing?

Remote file systems

ONFS, DFS, SMB, FTP -- different kinds of files
O (Some systems can "mount™ remote files via ftp.)

Osshfs-- an integrated solution for ssh access to files
OLots of issuesin remote file systems -- not much here yet
Oclient-server fs peer-to-peer
O authentication systems ... distributed naming services ...
Olarger number of failure modes

File consistency

How arefiles shared ... how do reads and writes interact

O Immutable-Shared-Files semantics
0 Once shared, afile can never change
0O Session Semantics
O File gets a "snapshot™ at open
0 Changes are not committed until close
0 Changes are not visible unless opened after a close
OUNIX Semantics
owrites are visible immediately to any process with an open file

O allow processes to interfere with each other.

O Network file systems have done al 3.
ONFS -- UNIX
OAFS, Coda-- mostly session semantics
O (process on the same machine get UNIX semantics)
OSPRITE (Berkeley, very old) -- read only shared

Protection

reliability -- safe from physical damage
protection -- safe from improper access

Protection may depend of use of file system
O Operations to control: read, write, execute, append, delete, list, change attributes ..

O Possibly others ... rename, copy, create
0O Special directories...
Otake and give directoriesat LLNL

Approaches to access control
O Access Control Lists
Oeach file has alist of users and allowed operations
onot on the list? no access
O Drawback?

olLong lists

Protection (page 2)

0 Domain based access:
o Owner, Group, Universe

O Each file has protection for each domain
O Access checks user’ s domain membership
O Drawback?
O Hard to select asingle user
Typical implementations
O Primary protection by domain
O Secondary protection by ACLs
Examples:
OUNIX: primary protections: read, write, execute
aNT: full control, modify, read& execute, read, write, ...
OACL "who" can be adomain or a user
aDOS: nothing!
OVariety of waysto set these:
aNT: typically a GUI
O Solaris: has both UNIX and ACL
O getfacl(1) and setfacl (1)

Read 13.5 Memory-Mapped files ... we talked about them earlier

File System Implementation (Chapt 14)

Typically file systems are stored on disks of somekind ...

They provide:
Orewrite: read data, modify, write back to same location (Not ZFS)

Orandom access to any block of data ... may take time
Basic File Systems -- Typica hardware components
ODisk
ODevice Driver -- knows how to control disk
OBasic File System -- uses Device Driver to operate, manages buffers, caches
O File-organi zation module -- knows about file structure
OLogical file system -- manages meta-data i nformation
O meta-data -- data about thefile, size, date, ...
OManagement of open files...
Oldeaof aVirtua File system ...
OOneinterfaceto ALL file systemsimplemented by OS
OUNIX V-node
oAll file systems implement same API for OS to use
a Core OS knows nothing about actual FS detail
OBest if implemented as alayers of "independent” subsystems

File System Implemenation (page 2)

FUSE -- more recent Abstraction ...
O Implementation of afile system in user space

OOS passes API callsto user space

O User space program (daemon) implements FS

On Disk Structures Vs In Memory Structures
OOn Disk:
O Total information to access all data
Oln Memory:
O Caches of On Disk information
a0 Dynamic information:
O Mount information
0 Open files and file pointers
O per-process information (file handle, file descriptor)
Olssue:
0 Keeping datain memory in sync with disk

O partial writesto disk in case of OS failure

Typical Disk Structures:

0 Boot control "block" -- information needed by ROM/OS for boot
O Volume control "block" -- core information on FS

OUFS: superblock, NTFS: master file table
O Directory Formats
OFS block management structures
OFile/Directory block management

Directory Implementation

Directory:
O Keeps names of files with method to lookup meta-data
OSimple Method: linear
O Fixed or variable sized entries
O Entry data depends on kind of FS
O Search time O(n), n number of entries
O Insert/Delete time?
OHash table:
00O(1) search time, insert, delete time
O collision techniques?
O base hash table size
O dynamic issues hash tables
0O Some kind of tree storage:

Otreesin alinear file?

Allocation methods

Allocation of data blocks (sectors) for files

O Simple: Contiguous Allocation

O Define alinear ordering of sectors

OFilestartsat LBA (logical block address) X

Odata contained in next Y blocks
O Issues?
O random access -- easy
O sequential access -- easy
odynamic file size -- hard

O creating a new file, unknown space needs

O Start in largest block
Oextending afile -- hard
O ends up with external fragmentation
O may need a de-fragmentation function
O Live or offline?
OUsed by RT-11, PDP-11 computers

Allocation methods (page 2)

O Linked Allocation
adirectory/meta-data has first block address

O each block has a"next block" addressin the block
O Issues?
O creating -- easy
Owriting/extending -- easy
O sequential access -- easy, may take longer than contiguous
O random access -- hard
O ends up with internal fragmentation
Odynamic file size -- easy
O datain each sector is less than sector size
areliability?
O data corrupted (link) => lose the remainder of file
O Doubly linked list?

O Store filename, block number?

Allocation methods (page 3)

OFAT -- File alocation table (MSDOS, 0OS-2)

Oarray of block numbers, one for each data block on FS
glinksarein the FAT, no loss of data on disk

aonot allocated: O entry or on afreelist

ODisk reads for FAT and file

Allocation methods (page 3)

Indexed allocation
OBlock of "pointers to data blocks®

O Each file has its own index block
O Directory has pointer to index block
O lssues?
O Create, read, write, append, random access easy
O Run out of space in index block?
o Small files ... lots of wasted space in index block
0 Small index blocks ... small files
Olinked scheme, last entry in index block is to next index block
o multi-level index scheme, top level points to index blocks...
o UNIX UFS combined method
asmall index block, one level regular index block, 2 & 3levd ...
FS Performance ... amajor component of "system feels fast"
OFAT/NTFS systems -- De-fragmentation -> get files closer to contiguous
OBerkeley’s changes to UFS for FFS
o Allocate file in the same cylinder, not just contiguous

O Other disk related tweaks of which many are not valid any more

Free-Space Management

Free disk space management needs to be done
OKeep track of unallocated blocks

OMay use unallocated blocks to help keep track
OBit Vectors
oone bit per FS block
o0 alocated, 1 free
O Advantage
O compact
offs (find first set) instructions
O Disadvantage
Olarge bit maps (e.g. 1TB file system)
affsinstructions need all bits in memory

OLinked List
O Either in the Disk Blocks or the FAT
O Advantage -- relative easy
O Disadvantage -- May be hard to allocate from same cylinder ...

Free-Space Management (page 2)

Counting (akarun length encoding)
O Free blocks usually come in groups

OLinked list hasfirst block, number of blocks free
O Advantages
O0An empty disk has one entry in the list.
O Disadvantages
O Turnsinto simple linked list after much use
0O Space Maps
O Sun’s ZFS -- designed for a huge number of files
0 Can include multiple file systems
OMetaDatal/O is of importance
O Divides space into meta-slabs each with a spacemap
0 One spacemap easily fitsinto memory ... read, modify, write
0O ZFS also depends on transaction processing and log file systems
omore later on log file systems
OTRIMing unused blocks
ONVM flash-based, writing is very slow
O Tell deviceablock isno longer in afile so it can be erased

0 Management of free "lists" when rewrite is expensive

Efficiency and Performance

Disk isthe maor bottleneck in OSes.

O name lookups can be expensive
O space alocation can be costly
O Size of pointersto files => space used to store them
016, 32, 64 bit pointers
OZFS: 128 bit pointers
Oreading and writing can cause system to slow down
Oe.g. write ablock, now need it again
O (page out, page fault is an example)
O Buffer cache
0 Cache of Disk blocks Read/Written
0 Page cache and FS cache VS Unified buffer cache
O LRU replacement algorithm in cache
O Synchronous vs Asynchronous writes
ORead Ahead for buffer management of read files

File System Maintenance

File de-fragmentation
OWhy needed?

OWhich FSes need this?

File system consistency checker

Odiskchk in DOS

Ofsck in UNIX

OMake sure all structures are correct and complete
O Free inodes and Used inodes add up to total
O Free blocks and Used Blocks add up to total
O File meta-data matches reality (e.g. nlinks)
aAll files (inodes) are reachable in directory tree

O(ToyFs needs a fsck program! or a check option to the toyfs program)

L og-Structured File Systems

0 DB style transactions as applied to file systems
O Tries to make sure that we never need to repair much

OBasic Idea
O Write to the "log" what will be done (e.g. metadata)
o Do what you said
O Writeto log you have done it.
OLog can be acircular buffer of appropriate size
O At "recovery time" can see that alog entry was not finished
aAbort or reply entry
O Log writes are sequential and thus very fast

OUsed in many file systemsnow, NTFS, LFS (BSD), ext3fs, FFS (BSD)

Other types of things have been used to improve speed and reliability
OZFS -- snapshot, never overwrites blocks, no FSCK ...

Backups -- another way to preserve your FS data
O Full backups vs Incremental backups

Read 14.8 (WAFL)

File System Internals

O Kinds of file systems
O general-purpose -- files, directories -- on long term storage

atmpfs -- afile system in main memory

Oobjfs-- a"virtua"” file system, access to kernel symbols

Octfs-- avirtua file system, "contract information”

Olofs-- a"loop back" file system

O procfs -- avirtua file system with system information, process information

aufs, ffs, extXfs, zfs -- general purpose file systems

O File-System Mounting

O Toy Fs constructor -- read the first sector, get ready to use

0 Genera term for that is mounting

O Mount point ... place to access the file system

o DOS/Windows:
Odrive letter:\path\to\file

O UNIX/Linux:
omount on adirectory (usually empty, hides directory contents)
0 mount various kinds of file systems

OLinux: gio alows users to mount smb file systems

