
 Memory Management  (Chapter 9)
 

 To improve CPU utilization in a multiprogramming environment
 we need multiple programs in main memory at the same time.
 

 Basic CPUs and Physical Memory
  CPU <-> cache <-> Physical memory

    CPU stall going to main memory

    cache speedups

  Address Binding

    compile time

    load time (relocatable code)

    execution time

    logical (CPU) vs physical (memory) addresses

      MMU -- changes logical into physical

    PIC (position independent code)

    Dynamic Linking and shared libraries

      Needs PIC code

      Usually needs advanced hardware

    Protection from other processes, dynamic address control



 Memory Management Techniques
 

 Swapping
  Copying out memory to a "backing store"

    Early systems used "drum storage"

    Disk is used now, both rotating and solid state

  End of quantum, swap out while running another process.

  Larger memory means less swapping

  Thrashing -- spending most of time swapping

  Mobile OSes don’t usually support swapping

    Give other applications memory warnings ...

 Contiguous Memory Allocation

  Full memory footprint of programs stored contiguously

  Protection from other processes

    Base and limit registers  (Kernel mode access only)

      Min and Max for current process

      real address vs base+offset

  Partition memory for processes

    Fixed sized partitions

    Variable sized partitions



 Contiguous Memory Allocation (Page 2)
 

  Partition algorithms (variable sizes)
    First fit

    Best fit

    Worst fit

    Fragmentation

      external -- variable partitions

      internal -- fixed sized or blocked allocation
 

 Paging -- a better solution 

  Non-contiguous memory allocation

  Uses special hardware to do address mapping

  Basic Method

    Physical memory -- divided up into equal sized frames

    Logical memory -- divided up into pages (same size as frames)

    MMU maps between logical memory (pages) to physical (frames)

    Page table: maps page to frame

    Physical memory can have more frames than logical has pages

    page table changed between processes (kernel mode only)



 Paging Hardware
 

  Simple MMU
    Page table:  N entries maps to N pages

    address:  <page number><offset in page>

    Translation:  PT[page number] + offset => physical address

    Storage for page table?

      Registers -- special set / process switch issues

      Memory -- switch pointer



 Multi-level page tables
 

  Multi-level page tables:  (32 bit x86 series, old NS 32532)
    Page size 4k, 32 bit addresses

    1024 entries in each page table page

    Virtual Address

      11-00: offset

      21-12: entry B

      31-22: entry A

    Register has a pointer to Table A (Page directory)

    Entry A: 1K entries pointing to entry B tables (Page Table)

    Entry B: 1K entries pointing to frames

    Filled out page tables ...  1025 4K pages:  4,198,400 bytes

    Page Table Entry format:  bits 31-12, frame number, 

      11-7 unused (mostly), 6 dirty, 5 referenced, 4 cache disable

      3 write-through, 2 user/supervisor, 1 R/W,  0 valid



 RISC-V Summary
 

  SV 32 -- very similar to i386, 4K pages, 2 level page tables
    1K entries per page table, 32 bits/entry

    32 bit virtual address, 34 bit physical address (16G mem)

      VA: <10><10><12>  PA: <14><10><12> or <24><12>

    ANY PTE can be a "leaf"

    4K page and a 4M page (must be 4M alligned, super page)

    PTE format

      Bits 0 - 9 same for all RISCV models

      0 - V (valid)  1 - R (read) 2 - W (write) 3 - X (execute)

        RWX values:  0 => pointer to next level

          1 - Read only, 3 - Read/Write, 4 - execute only, 5 - RX, 7 -  RWX

      4 - U (leaf, availabe in user mode)  5 - G (global .. in all maps)

      6 - A (accessed)  7 - D  (dirty)  (leaf only, may not be set by hardware)

      8-9 - RSW (reserved for supervisor)

      10-31 - PPN - Frame number (22 bits, matches 34 bit physical)

  Available only on the RISCV-32, not on the RISCV-64 



 More RISCV SV levels
 

  SV 39 -- Add another level, 3 levels total
    Used by Toy OS (Smallest VM model in RISCV-64)

    Still 4k page size.

    Virtual addresses, 39 bits: <9><9><9><12>

    Physical addresses, 56 bits <44 frame no><12 offset>

    4k base page, 64 bit entries -> 512 entries per page table

    ANY PTE can be a "leaf", 4K, 2M (megapage), and 1G (gigapages) pages (aligned)

    PTE format:

      0-9: same as SV 32

      10 - 53:  PPN (frame number)

      54-60: reserved (must be zero)

      61-62: PBMT (Page-based Memory Types), 63 - N (reserved for future definitions)

  SV 48 -- Add another level, 4 levels total

    48 bit logical: <9><9><9><9><12>,  56 bit physical

    4k base page, 64 bit entires -> 512 entries per page table

    any PTE can be a "leaf", 4k, 2M, 1G and 512G (terapage) pages. (aligned)

  SV 57 -- Add another level, 5 levels total

    4k base page, 64 bit entires -> 512 entries per page table

    any PTE can be a "leaf", 4k, 2M, 1G, 512G and 256 TiB (petapage) pages. (aligned)

  Ref: https://riscv.org/specifications/privileged-isa  pg 59
 



 Other Large Page Tables
 

 some 64 bit architectures use other techniques
  Hashed Page tables

    Entry: Page Virtual Address, Frame physical address, chain address

    Size of table an issue

  Clustered page tables -- similar to hashed

    Each entry points to a cluster of pages

    8, 16, or 32 pages in cluster

    makes smaller hash tables

  Inverted Page Tables (Ultra sparc, Power PC)

    Issue: regular page tables may take lots of memory (Full RV39 page tables -- 1,075,843,072 bytes)

    Solution: frame table

      Entry: Process Id, Virtual Address/page

      VA: <processID, Page #, offset>

      inverted table is searched for <PID, Page#>

      inverted table in associative memory or hash table

      harder to implement shared memory

 Shared pages? 

  i386/ns32532/RISCV methods

  hashed and inverted tables



 Other hardware support for paging
 

 Problem: Where to store page tables?
  In special registers?

    Process switch requires one to reload registers

  In memory?

    Each memory reference needs to look up a page table entry

    satp (Supervisor Address Translation and Protection register)

    Makes process switch much easier, one register

    double (or more) the time to access memory

    Solution to this ... TLB (Translation Look-aside buffer)

      High speed associative memory

      Stores <page number, frame number> pairs

      Can get it "invalidated" or "flushed"

      TLB set up by accessing a page table

      Fewer entries than total pages available

      Sometimes TLB entries can be "wired down"

      Some TLBs store <pid, page number, frame number>

        Can be used by multiple processes concurrently



 Segmentation
 

 Another twist of logical addresses to physical addresses
  Idea of various segments

    e.g. Text, Global, Heap, Stack

    may expand memory by using unique addresses for each segment

    e.g Often know when fetching instructions vs data

  Old example: HP 3000, 63 text segments, 1 or 2 data segments

    Segments can help do shared libraries

    Allowed for larger memory space than 16bit addresses allowed

  More recent example: IA-32

    Up to 16K segments, each segment 4G

      8K shared segments, 8K private segments

    6 segment registers to allow a process to address multiple segments

    final physical address, 32 bit 

    doesn’t allow larger physical than logical spaces



 Virtual Memory (Chapter 10)
 

 Previous chapter
  multiple processes in memory at the same time

  techniques to share main memory

  page table mechanisms
 

 This chapter -- complete memory view for processes

  how to manage memory (by kernel) for processes

 Basic requirement -- instructions/data must be in real memory to use them

  not all data/instructions need to be in memory all the time

    some unused code may never be needed

    logical memory may be larger than physical memory

      Old times ... overlays

    Error cases may not be needed

    Complete subsystems may be unused during a particular run

    Programmer allocates 100x100, user uses 10x10

  Allow placing of data/instructions in memory only if needed.

    Not all of all segments are mapped

    Allows more processes in main memory at the same time



 Virtual Memory (page 2)
 

 Virtual memory -- separation of logical (user) view from physical memory
  Programmer can program with a large VM address

  Programmer can view it as linear and contiguous

  Paging hardware allows for "shared pages"

    Use to get shared libraries implemented
 

 Demand paging

  A different kind of "swapping"

    Swapping?

    Save entire process memory to disk, reload to memory to run

  Demand paging can be a "lazy swapper"

    process doing this is the "pager"

    Code (text) of program is on disk

    Can allocate disk space for process "r/w memory" to be saved.



 Demand paging (page 2)
 

  don’t load memory from disk until it is needed
    How?

    Page fault => need page X

    find page X on disk

    load page X into memory

    update page table

    rerun instruction

    uses the valid bit in the page tables

    larger page tables (multi-level) demand load page tables
 



 Pure demand paging ...
 

    start program running without any pages in memory!
             (New program & process )
      not cool ... there are known pages needed

        instructions at load position

        initial stack location

        global data possibly

    performance is an issue for demand paging

      levels of access: cache -> memory -> disk

      times? 10ns, 50ns, 8 to 12ms (.1ms ssd)

    effective access time = (1-p)*ma + p*pft

      ma = memory access time (ignoring cache effects),

      pft = page fault time, p = fault probability 0 <= p <= 1

    Use ns (nano seconds)

    ma = 50



 Demand paging (page 3)
 

  Performance (continued)
    pft?

      trap, context switch, call page fault function

      find page, lookup disk file, schedule page load

      wait for page to be loaded

      return from trap (context switch ....)

    up to 8-12 ms (or more!)  [.1ms ssd]

    time = (1-p) * 50 + p * 8000000  [p*100000 ssd]

            = 50 + 7999950*p  [50-99950p ssd]

    If p = .001 (one out of 1000) => 8.1 microsec memory cycle! [150ns ssd]

    10% performance degradation?

      55 > 50 + 7999950*p  [50 + 99950*p ssd]

      5 > 7999950*p    [5 > 99950*p ssd]

      p < 0.000000625 or 1 in 1,600,000  [ p< .00005 or 1 in 20000 ssd]

  This did just a read, not read and write ... so double the numbers if both is required

  ssd issue of write life for swapping an issue



 Process creation
 

 Fork(): 
  Have a running process with a complete memory image

  Options?

    Copy the entire memory space?

    Copy on write!

      On fork, turn all page entries to R/O

      A process that gets a page fault due to write

        copy frame

        set each page table to point to a different one

      (Harder to do on inverted page tables)

      Processes share R/O pages

  Advantage of copy-on-write?

    Don’t copy and then throw away!

  vfork()? 

    suspend parent, let child run using parent’s memory

    child should immediately call exec().

    child change of memory will show up in parent!

 Exec():  Keep current PCB and so forth, rebuild memory image



 Demand Paging and Page Replacement
 

 With demand paging comes something not as expensive as swapping ...
  page removal from frames when out of frames

    page fault -> need more memory

    memory is full, need to reuse a frame

    take a page from some other process

      Dirty or clean page?

        clean if possible

          don’t have to write it out

          don’t have to wait for it to be written

  Algorithm for selecting frame/page to throw out... (page replacement algorithms)

    most OSes have their own scheme .... but

    there are standard algorithms to consider

      FIFO

        Issues?

          May throw out one you need soon

          Belady’s anomaly -- more frames increase page fault rate in some cases

          Expect more page frames lower fault rate



 Page Replacement (page 2)
 

  Optimal Page replacement
    Always replace the page that will not be used for the longest period of time.

    Doesn’t really exist

 Trying to approximate the Optimal Page replacement algorithm

  Least recently used (LRU)

    page that has not been used for the longest

    assume it will not be needed soon

    locality of reference in code and data

  How to implement?

    Hardware support is essential

    Counters -- add a memory reference counter to hardware

      Access to a page stores counter to that page table entry

      Smallest counter in page table is LRU page

    Stack -- add a stack to the page table

      Each memory access puts the current page on top of stack

      Entries are not allowed to be duplicated

      Entry at the bottom of stack is LRU page



 Page Replacement (page 3)
 

  Problem?
    Few computers supply previous mentioned hardware support

  What do they provide?

    Referenced and Dirty Bits -- like RISCV

 LRU approximation algorithms

  These algorithms assume that the referenced and dirty bits are cleared on load
 

  second-chance

    Basic algorithm is fifo

    when a page is selected, check reference bit

      if 0, replace

      if 1, add to end of fifo and clear reference bit
 

  enhanced second-chance

    use referenced and modified, use the pair (r,d)

    (0,0) not referenced, not modified, good choice

    (0,1) not referenced, modified, requires a page out also

    (1,0) referenced, not modified, may be used again

    (1,1) referenced, modified, most likely in active use, page out required

    replace the oldest in the lowest non-empty class first



 LRU approximation algorithms (page 2)
 

  Additional-reference-bits
    keep an extra integer value for each page in memory (8 bits works)

    at a regular interval shift reference bit into extra integer at MSB

      100 ms a good time?

      right shift R -> extra_int, lsb (least significant bit) drops out

      clear the reference bit

    replace page with smallest extra integer

    vary the number of bits

    extreme case of 1 bit => second-chance algorithm

  LFU - Least frequently used

    keep a count of the number of times the page is used

      hardware counter?

      reference bit?

    small counts imply not frequently used

    Issue:  Initial use page, not used later

      Solution: count aging

  MFU - most frequently used

    idea is that new pages just brought in have not been frequently used



 Other paging related ideas
 

 Page-Buffering
  Keep a collection of free frames -- the pool

  page fault -> select page to replace via algorithm

    get a free frame for new page, start read immediately

    if old frame is dirty, write it out, then add it back to the pool

  want to keep a minimum number in the free frame pool

  allows process to resume faster than a "write page, load page" operation

  Modification to improve "write times"

    when paging device is idle, select a modified frame to write out

    improves the probability that the page is not dirty when selected for page out

  Another tweak -- pages in the free pool "remember" which page they contain

    A page fault for a page in the free pool requires no I/O to restore

    works well with FIFO or second-chance

    works with other paging algorithms



 Frame Allocation
 

 How should frames be allocated to processes?
  Equal allocation?

  Proportional allocation?
 

 First ... minimum frame count?

  Instruction length ... can it cross a page

  Data access:

    number of memory locations per instruction

    any indirection

    infinite indirection?

      limit to 16 levels or so
 

 Equal allocation: m frames, n processes, each gets m/n
 

 Proportional allocation: frames needed total vs frames needed by all processes

  P_i_frames_needed/total_frames_needed * frames_available
 

 Priority allocation: give more frames to high priority processes



 Frame Allocation (page 2)
 

 Global versus Local allocation
  Process i gets a page fault

    look only at pages owned by P_i?  (local)

    look at all possible frames? (global)

  Global -- a process can’t control own fault rate

  Local -- may not get access to unused memory

    large program spending lots of time in small part of program/data

  Global used most often
 

 Non-uniform memory access issues

  Multi-CPU / Memory Module systems

  CPU access faster to some memory

  choose frames with minium latency



 Thrashing
 

  CPU utilization vs degree of multiprogramming
  At some point, increasing the load decreases the CPU utilization

  Happens more often in global replacement algorithms

    spend more time doing paging than CPU work

  Locality

    a set of frames actively used together

    a way to help quantify what pages should be in memory

    may have several localities during the running of a program

    don’t have enough pages for locality ... the process thrashes
 

 Working Set Model

  Parameter: delta time -- working-set window

  Varies over time

  Find a working set for each process

  Keep each frame allocation to working set

  Helps stop thrashing and increase CPU utilization

  May be able to help detect working set via page fault rate



 Memory Mapped Files and Shared Memory
 

 Techniques using paging
  Memory Mapped Files

    Map file, don’t read in contents

    Access to file is via memory "reference"

    Uses pager to get data into memory

    Automatic write back of "dirty pages"

    Allows multiple processes to use same file

    CMU: Recoverable Virtual Memory (RVM)

      Build a data structure in memory

      Copy goes to disk

      Run program again, recover data structure

    NetBSD on small files for cp(1):

      mmap(source file); mmap(dest file); memmove(); close()...
 

 Shared Memory

  Use page tables, map same physical frames into logical adr space of 2 or more processes

  Can map as r/w or r/o pages

  SYSV API for shared memory



 Kernel Memory and Allocation
 

 Kernel memory is somewhat different than "user memory"
  Still using from limited frame pool

  Hardware may require contiguous memory, e.g. DMA buffers

  Some OSes may not run in a paged mode

  How about a page fault while running in kernel mode?

    Error for most OSes.

  Read about Buddy System ... not really that good

  Typical allocators

    subsystem allocates frames

    may hand out smaller chunks to other parts of the kernel

    large allocations may be integral number of frames, contiguous

  Typical OS

    on boot find free frames

    initialize kernel memory allocation

    use "free frames" for both user pages and kernel allocation

    kernel allocation may interfere with user processes by grabbing frames

    NetBSD -- pmap component maps physical memory



 Other issues
 

 Prepaging -- Trying to predict page needs and get the page in memory before use
  May do this for a newly exec()ed process and processes being swapped in.

  Possible problems: guessed wrong, too much prepaging
 

 Page size?

  Often the hardware dictates page size

  Some machines offer several page sizes

    small pages -> more efficient memory use (fragmentation)

    larger pages -> less paging

  time required to read/write a given page
 

 TLB reach

  TLB (Translation Lookaside Buffer) 

  TLB reach -- amount of memory accessible from the TLB

  page size * number of TLB entries

  would like working set all from the TLB

  Some architectures allow for multiple page sizes 

    means TLB is partially managed by software



 Other issues (page 2)
 

 I/O and frames
  Common I/O technique, DMA (Direct Memory Access)

  DMA uses real memory addresses

  What if user buffer crosses a page boundary?

    Don’t do DMA to user memory

    OR Move pages to be contiguous

  Lock (or pin) a frame in memory for I/O operation

  Lock frames for kernel into memory

    OSes don’t like to generate page faults themselves!

 Kernel access to user data:

  RISCV/Toy OS

    Virtual vs Real address

    Kernel running without mapping, user running with mapping

  Other machines/OSes x86, NetBSD/riscv, linux on RISCV

    kernel and user both mapped

    NetBSD: uiomove() function

    Boot time: start running at real addresses, switch to virtual

 Read section 10.10




