
 Memory Management (Chapter 9)

 To improve CPU utilization in a multiprogramming environment
 we need multiple programs in main memory at the same time.

 Basic CPUs and Physical Memory
 CPU <-> cache <-> Physical memory

 CPU stall going to main memory

 cache speedups

 Address Binding

 compile time

 load time (relocatable code)

 execution time

 logical (CPU) vs physical (memory) addresses

 MMU -- changes logical into physical

 PIC (position independent code)

 Dynamic Linking and shared libraries

 Needs PIC code

 Usually needs advanced hardware

 Protection from other processes, dynamic address control

 Memory Management Techniques

 Swapping
 Copying out memory to a "backing store"

 Early systems used "drum storage"

 Disk is used now, both rotating and solid state

 End of quantum, swap out while running another process.

 Larger memory means less swapping

 Thrashing -- spending most of time swapping

 Mobile OSes don’t usually support swapping

 Give other applications memory warnings ...

 Contiguous Memory Allocation

 Full memory footprint of programs stored contiguously

 Protection from other processes

 Base and limit registers (Kernel mode access only)

 Min and Max for current process

 real address vs base+offset

 Partition memory for processes

 Fixed sized partitions

 Variable sized partitions

 Contiguous Memory Allocation (Page 2)

 Partition algorithms (variable sizes)
 First fit

 Best fit

 Worst fit

 Fragmentation

 external -- variable partitions

 internal -- fixed sized or blocked allocation

 Paging -- a better solution

 Non-contiguous memory allocation

 Uses special hardware to do address mapping

 Basic Method

 Physical memory -- divided up into equal sized frames

 Logical memory -- divided up into pages (same size as frames)

 MMU maps between logical memory (pages) to physical (frames)

 Page table: maps page to frame

 Physical memory can have more frames than logical has pages

 page table changed between processes (kernel mode only)

 Paging Hardware

 Simple MMU
 Page table: N entries maps to N pages

 address: <page number><offset in page>

 Translation: PT[page number] + offset => physical address

 Storage for page table?

 Registers -- special set / process switch issues

 Memory -- switch pointer

 Multi-level page tables

 Multi-level page tables: (32 bit x86 series, old NS 32532)
 Page size 4k, 32 bit addresses

 1024 entries in each page table page

 Virtual Address

 11-00: offset

 21-12: entry B

 31-22: entry A

 Register has a pointer to Table A (Page directory)

 Entry A: 1K entries pointing to entry B tables (Page Table)

 Entry B: 1K entries pointing to frames

 Filled out page tables ... 1025 4K pages: 4,198,400 bytes

 Page Table Entry format: bits 31-12, frame number,

 11-7 unused (mostly), 6 dirty, 5 referenced, 4 cache disable

 3 write-through, 2 user/supervisor, 1 R/W, 0 valid

 RISC-V Summary

 SV 32 -- very similar to i386, 4K pages, 2 level page tables
 1K entries per page table, 32 bits/entry

 32 bit virtual address, 34 bit physical address (16G mem)

 VA: <10><10><12> PA: <14><10><12> or <24><12>

 ANY PTE can be a "leaf"

 4K page and a 4M page (must be 4M alligned, super page)

 PTE format

 Bits 0 - 9 same for all RISCV models

 0 - V (valid) 1 - R (read) 2 - W (write) 3 - X (execute)

 RWX values: 0 => pointer to next level

 1 - Read only, 3 - Read/Write, 4 - execute only, 5 - RX, 7 - RWX

 4 - U (leaf, availabe in user mode) 5 - G (global .. in all maps)

 6 - A (accessed) 7 - D (dirty) (leaf only, may not be set by hardware)

 8-9 - RSW (reserved for supervisor)

 10-31 - PPN - Frame number (22 bits, matches 34 bit physical)

 Available only on the RISCV-32, not on the RISCV-64

 More RISCV SV levels

 SV 39 -- Add another level, 3 levels total
 Used by Toy OS (Smallest VM model in RISCV-64)

 Still 4k page size.

 Virtual addresses, 39 bits: <9><9><9><12>

 Physical addresses, 56 bits <44 frame no><12 offset>

 4k base page, 64 bit entries -> 512 entries per page table

 ANY PTE can be a "leaf", 4K, 2M (megapage), and 1G (gigapages) pages (aligned)

 PTE format:

 0-9: same as SV 32

 10 - 53: PPN (frame number)

 54-60: reserved (must be zero)

 61-62: PBMT (Page-based Memory Types), 63 - N (reserved for future definitions)

 SV 48 -- Add another level, 4 levels total

 48 bit logical: <9><9><9><9><12>, 56 bit physical

 4k base page, 64 bit entires -> 512 entries per page table

 any PTE can be a "leaf", 4k, 2M, 1G and 512G (terapage) pages. (aligned)

 SV 57 -- Add another level, 5 levels total

 4k base page, 64 bit entires -> 512 entries per page table

 any PTE can be a "leaf", 4k, 2M, 1G, 512G and 256 TiB (petapage) pages. (aligned)

 Ref: https://riscv.org/specifications/privileged-isa pg 59

 Other Large Page Tables

 some 64 bit architectures use other techniques
 Hashed Page tables

 Entry: Page Virtual Address, Frame physical address, chain address

 Size of table an issue

 Clustered page tables -- similar to hashed

 Each entry points to a cluster of pages

 8, 16, or 32 pages in cluster

 makes smaller hash tables

 Inverted Page Tables (Ultra sparc, Power PC)

 Issue: regular page tables may take lots of memory (Full RV39 page tables -- 1,075,843,072 bytes)

 Solution: frame table

 Entry: Process Id, Virtual Address/page

 VA: <processID, Page #, offset>

 inverted table is searched for <PID, Page#>

 inverted table in associative memory or hash table

 harder to implement shared memory

 Shared pages?

 i386/ns32532/RISCV methods

 hashed and inverted tables

 Other hardware support for paging

 Problem: Where to store page tables?
 In special registers?

 Process switch requires one to reload registers

 In memory?

 Each memory reference needs to look up a page table entry

 satp (Supervisor Address Translation and Protection register)

 Makes process switch much easier, one register

 double (or more) the time to access memory

 Solution to this ... TLB (Translation Look-aside buffer)

 High speed associative memory

 Stores <page number, frame number> pairs

 Can get it "invalidated" or "flushed"

 TLB set up by accessing a page table

 Fewer entries than total pages available

 Sometimes TLB entries can be "wired down"

 Some TLBs store <pid, page number, frame number>

 Can be used by multiple processes concurrently

 Segmentation

 Another twist of logical addresses to physical addresses
 Idea of various segments

 e.g. Text, Global, Heap, Stack

 may expand memory by using unique addresses for each segment

 e.g Often know when fetching instructions vs data

 Old example: HP 3000, 63 text segments, 1 or 2 data segments

 Segments can help do shared libraries

 Allowed for larger memory space than 16bit addresses allowed

 More recent example: IA-32

 Up to 16K segments, each segment 4G

 8K shared segments, 8K private segments

 6 segment registers to allow a process to address multiple segments

 final physical address, 32 bit

 doesn’t allow larger physical than logical spaces

 Virtual Memory (Chapter 10)

 Previous chapter
 multiple processes in memory at the same time

 techniques to share main memory

 page table mechanisms

 This chapter -- complete memory view for processes

 how to manage memory (by kernel) for processes

 Basic requirement -- instructions/data must be in real memory to use them

 not all data/instructions need to be in memory all the time

 some unused code may never be needed

 logical memory may be larger than physical memory

 Old times ... overlays

 Error cases may not be needed

 Complete subsystems may be unused during a particular run

 Programmer allocates 100x100, user uses 10x10

 Allow placing of data/instructions in memory only if needed.

 Not all of all segments are mapped

 Allows more processes in main memory at the same time

 Virtual Memory (page 2)

 Virtual memory -- separation of logical (user) view from physical memory
 Programmer can program with a large VM address

 Programmer can view it as linear and contiguous

 Paging hardware allows for "shared pages"

 Use to get shared libraries implemented

 Demand paging

 A different kind of "swapping"

 Swapping?

 Save entire process memory to disk, reload to memory to run

 Demand paging can be a "lazy swapper"

 process doing this is the "pager"

 Code (text) of program is on disk

 Can allocate disk space for process "r/w memory" to be saved.

 Demand paging (page 2)

 don’t load memory from disk until it is needed
 How?

 Page fault => need page X

 find page X on disk

 load page X into memory

 update page table

 rerun instruction

 uses the valid bit in the page tables

 larger page tables (multi-level) demand load page tables

 Pure demand paging ...

 start program running without any pages in memory!
 (New program & process)
 not cool ... there are known pages needed

 instructions at load position

 initial stack location

 global data possibly

 performance is an issue for demand paging

 levels of access: cache -> memory -> disk

 times? 10ns, 50ns, 8 to 12ms (.1ms ssd)

 effective access time = (1-p)*ma + p*pft

 ma = memory access time (ignoring cache effects),

 pft = page fault time, p = fault probability 0 <= p <= 1

 Use ns (nano seconds)

 ma = 50

 Demand paging (page 3)

 Performance (continued)
 pft?

 trap, context switch, call page fault function

 find page, lookup disk file, schedule page load

 wait for page to be loaded

 return from trap (context switch)

 up to 8-12 ms (or more!) [.1ms ssd]

 time = (1-p) * 50 + p * 8000000 [p*100000 ssd]

 = 50 + 7999950*p [50-99950p ssd]

 If p = .001 (one out of 1000) => 8.1 microsec memory cycle! [150ns ssd]

 10% performance degradation?

 55 > 50 + 7999950*p [50 + 99950*p ssd]

 5 > 7999950*p [5 > 99950*p ssd]

 p < 0.000000625 or 1 in 1,600,000 [p< .00005 or 1 in 20000 ssd]

 This did just a read, not read and write ... so double the numbers if both is required

 ssd issue of write life for swapping an issue

 Process creation

 Fork():
 Have a running process with a complete memory image

 Options?

 Copy the entire memory space?

 Copy on write!

 On fork, turn all page entries to R/O

 A process that gets a page fault due to write

 copy frame

 set each page table to point to a different one

 (Harder to do on inverted page tables)

 Processes share R/O pages

 Advantage of copy-on-write?

 Don’t copy and then throw away!

 vfork()?

 suspend parent, let child run using parent’s memory

 child should immediately call exec().

 child change of memory will show up in parent!

 Exec(): Keep current PCB and so forth, rebuild memory image

 Demand Paging and Page Replacement

 With demand paging comes something not as expensive as swapping ...
 page removal from frames when out of frames

 page fault -> need more memory

 memory is full, need to reuse a frame

 take a page from some other process

 Dirty or clean page?

 clean if possible

 don’t have to write it out

 don’t have to wait for it to be written

 Algorithm for selecting frame/page to throw out... (page replacement algorithms)

 most OSes have their own scheme but

 there are standard algorithms to consider

 FIFO

 Issues?

 May throw out one you need soon

 Belady’s anomaly -- more frames increase page fault rate in some cases

 Expect more page frames lower fault rate

 Page Replacement (page 2)

 Optimal Page replacement
 Always replace the page that will not be used for the longest period of time.

 Doesn’t really exist

 Trying to approximate the Optimal Page replacement algorithm

 Least recently used (LRU)

 page that has not been used for the longest

 assume it will not be needed soon

 locality of reference in code and data

 How to implement?

 Hardware support is essential

 Counters -- add a memory reference counter to hardware

 Access to a page stores counter to that page table entry

 Smallest counter in page table is LRU page

 Stack -- add a stack to the page table

 Each memory access puts the current page on top of stack

 Entries are not allowed to be duplicated

 Entry at the bottom of stack is LRU page

 Page Replacement (page 3)

 Problem?
 Few computers supply previous mentioned hardware support

 What do they provide?

 Referenced and Dirty Bits -- like RISCV

 LRU approximation algorithms

 These algorithms assume that the referenced and dirty bits are cleared on load

 second-chance

 Basic algorithm is fifo

 when a page is selected, check reference bit

 if 0, replace

 if 1, add to end of fifo and clear reference bit

 enhanced second-chance

 use referenced and modified, use the pair (r,d)

 (0,0) not referenced, not modified, good choice

 (0,1) not referenced, modified, requires a page out also

 (1,0) referenced, not modified, may be used again

 (1,1) referenced, modified, most likely in active use, page out required

 replace the oldest in the lowest non-empty class first

 LRU approximation algorithms (page 2)

 Additional-reference-bits
 keep an extra integer value for each page in memory (8 bits works)

 at a regular interval shift reference bit into extra integer at MSB

 100 ms a good time?

 right shift R -> extra_int, lsb (least significant bit) drops out

 clear the reference bit

 replace page with smallest extra integer

 vary the number of bits

 extreme case of 1 bit => second-chance algorithm

 LFU - Least frequently used

 keep a count of the number of times the page is used

 hardware counter?

 reference bit?

 small counts imply not frequently used

 Issue: Initial use page, not used later

 Solution: count aging

 MFU - most frequently used

 idea is that new pages just brought in have not been frequently used

 Other paging related ideas

 Page-Buffering
 Keep a collection of free frames -- the pool

 page fault -> select page to replace via algorithm

 get a free frame for new page, start read immediately

 if old frame is dirty, write it out, then add it back to the pool

 want to keep a minimum number in the free frame pool

 allows process to resume faster than a "write page, load page" operation

 Modification to improve "write times"

 when paging device is idle, select a modified frame to write out

 improves the probability that the page is not dirty when selected for page out

 Another tweak -- pages in the free pool "remember" which page they contain

 A page fault for a page in the free pool requires no I/O to restore

 works well with FIFO or second-chance

 works with other paging algorithms

 Frame Allocation

 How should frames be allocated to processes?
 Equal allocation?

 Proportional allocation?

 First ... minimum frame count?

 Instruction length ... can it cross a page

 Data access:

 number of memory locations per instruction

 any indirection

 infinite indirection?

 limit to 16 levels or so

 Equal allocation: m frames, n processes, each gets m/n

 Proportional allocation: frames needed total vs frames needed by all processes

 P_i_frames_needed/total_frames_needed * frames_available

 Priority allocation: give more frames to high priority processes

 Frame Allocation (page 2)

 Global versus Local allocation
 Process i gets a page fault

 look only at pages owned by P_i? (local)

 look at all possible frames? (global)

 Global -- a process can’t control own fault rate

 Local -- may not get access to unused memory

 large program spending lots of time in small part of program/data

 Global used most often

 Non-uniform memory access issues

 Multi-CPU / Memory Module systems

 CPU access faster to some memory

 choose frames with minium latency

 Thrashing

 CPU utilization vs degree of multiprogramming
 At some point, increasing the load decreases the CPU utilization

 Happens more often in global replacement algorithms

 spend more time doing paging than CPU work

 Locality

 a set of frames actively used together

 a way to help quantify what pages should be in memory

 may have several localities during the running of a program

 don’t have enough pages for locality ... the process thrashes

 Working Set Model

 Parameter: delta time -- working-set window

 Varies over time

 Find a working set for each process

 Keep each frame allocation to working set

 Helps stop thrashing and increase CPU utilization

 May be able to help detect working set via page fault rate

 Memory Mapped Files and Shared Memory

 Techniques using paging
 Memory Mapped Files

 Map file, don’t read in contents

 Access to file is via memory "reference"

 Uses pager to get data into memory

 Automatic write back of "dirty pages"

 Allows multiple processes to use same file

 CMU: Recoverable Virtual Memory (RVM)

 Build a data structure in memory

 Copy goes to disk

 Run program again, recover data structure

 NetBSD on small files for cp(1):

 mmap(source file); mmap(dest file); memmove(); close()...

 Shared Memory

 Use page tables, map same physical frames into logical adr space of 2 or more processes

 Can map as r/w or r/o pages

 SYSV API for shared memory

 Kernel Memory and Allocation

 Kernel memory is somewhat different than "user memory"
 Still using from limited frame pool

 Hardware may require contiguous memory, e.g. DMA buffers

 Some OSes may not run in a paged mode

 How about a page fault while running in kernel mode?

 Error for most OSes.

 Read about Buddy System ... not really that good

 Typical allocators

 subsystem allocates frames

 may hand out smaller chunks to other parts of the kernel

 large allocations may be integral number of frames, contiguous

 Typical OS

 on boot find free frames

 initialize kernel memory allocation

 use "free frames" for both user pages and kernel allocation

 kernel allocation may interfere with user processes by grabbing frames

 NetBSD -- pmap component maps physical memory

 Other issues

 Prepaging -- Trying to predict page needs and get the page in memory before use
 May do this for a newly exec()ed process and processes being swapped in.

 Possible problems: guessed wrong, too much prepaging

 Page size?

 Often the hardware dictates page size

 Some machines offer several page sizes

 small pages -> more efficient memory use (fragmentation)

 larger pages -> less paging

 time required to read/write a given page

 TLB reach

 TLB (Translation Lookaside Buffer)

 TLB reach -- amount of memory accessible from the TLB

 page size * number of TLB entries

 would like working set all from the TLB

 Some architectures allow for multiple page sizes

 means TLB is partially managed by software

 Other issues (page 2)

 I/O and frames
 Common I/O technique, DMA (Direct Memory Access)

 DMA uses real memory addresses

 What if user buffer crosses a page boundary?

 Don’t do DMA to user memory

 OR Move pages to be contiguous

 Lock (or pin) a frame in memory for I/O operation

 Lock frames for kernel into memory

 OSes don’t like to generate page faults themselves!

 Kernel access to user data:

 RISCV/Toy OS

 Virtual vs Real address

 Kernel running without mapping, user running with mapping

 Other machines/OSes x86, NetBSD/riscv, linux on RISCV

 kernel and user both mapped

 NetBSD: uiomove() function

 Boot time: start running at real addresses, switch to virtual

 Read section 10.10

