CS 447 - Operating Systems

Syllabus (facultyweb.cs.wwu.edu/~phil/classes/f 25/447)

Assignments
OToy Operating System, Toy File System
Environment
UNIX (Linux, OS X, NetBSD, FreeBSD)
Machine RISCV -- very new architecture
Toy OS ... object oriented OS written in C++

Reading the book ... you should do it!
C++ usedin Toy OS

C++isavery large language ... won't be using much of it.
C is supposed to be a subset language. (But not quite!)
Standard ideas used in 347 ... includes, functions, pointers, if, for, while, do, function parameters, ...
Except ... libraries: ToyOS hasits own, very few of the "normal” ones:
OLimited version of printf (kprintf inside the kernel)
O some string functions: mem* str* (not the full set, see include/string.h)

C++ features used

Objects: (Should be similar to java ... assuming you have used java objects)
adefinitionin .h files (mostly) (Well, | use .hxx files.)

Ouse of private and public members (no protected), friend classes/functions

Ouse of base classes and inheritance (include/list.hxx,lib/list.cxx, test/list_test.cxx)
O Test program uses "new" keyword for allocation of objects.
oKernel does not use "new", no dynamic allocation of objects.

Ouse of "inline" functions, full declaration in .h file/Class definition

Oobject initialization via constructor

Call by reference parameters:
OC: voidswap (int *x; int *y) { intz; z=*x; *x =*y; *y = z; }
OC++: void swap (int &x, int&y){ intz;z=x;x=y;y=2z}
0347 C: char *arg_parse(char *line, int *argcptr);
OC++: char *arg_parse(char *line, int &argc);

None of the following things you may have heard about in C++
Otemplates, standard template library
a10Stream 1/0
OMultiple inheritance, other advanced features of C++

You will NOT be an expert on C++ at the end of this class.

Introduction (Chapt 1)

What is an operating system?
O Hardware manager
OAllows "user" (application) programsto utilize the hardware
OTwo Views:
O User view: "Abstract machine"

O System View: glue between Abstract machine and real machine

Computer systems architecture ...

OCPUs, single, multiple (SMP, parallel, distributed, clusters)

OMemory Hierarchy: registers, cache, main memory, SSD, HardDisk, ...
O1/O Devices: Disks, Tape, USB, video, ...

O Other: interrupts (read book), interrupt driven 1/O, timers, ...

Primary Hardware Mechanism

ODua Mode: supervisor (system, privileged) vs user

O CPU hardware operation state

O User mode provides restriction of use of hardware

OMethods to switch between the two

O Multiprogramming -- Multiple programs in memory at the same time

O Multitasking -- runs multiple programs by switching between them or running at the same time
O Example: RISCV -- 3 modes: Machine, supervisor, user

Other issues and abstractions

Processes
O Abstraction for code execution

OUses memory and Dual M ode mechanisms

O Process M anagement

Other issues
OMemory Management
O File-System and Mass-Storage M anagement
O Caching
al1/0O System Management
O Protection and Security
ONetworking, Virtualization and Distributed Systems
0O Special Purpose systems: real time, multimedia, handheld

0OOS Data structures: lists, stacks, queues, hash tables, bit maps, ...

Other I'ssues (page 2)

Computing Environments
O Traditional Computing

O Mobile Computing
O Client-Server Computing
O Peer-to-peer Computing
0 Cloud Computing

o Public, Private, Hybrid
0O Real-Time Embedded

Open Source Operating Systems
aLinux -- Senior CS Magjor started it ... (GNU utilities)
OBSD -- Berkeley Computer Science Research Group
O Openlndiana -- Fork of Open Solaris when Oracle went to Solaris Express
OPlan 9 -- last release in 2015
O ReactOS -- Windows replacement
OAndroid -- cell/tablet... (Linux at the core)
O Severdl others ...

Operating System Structures (Ch 2)

Services
O Program Execution

01/0 operations
OFile systems -- data storage
O Communications -- (process to process, network ...)
O Error Detection
0O Resource Allocation (memory, disk, cpu time, ...)
O Accounting/Logging
O Protection and Security
OUser Interface?
0 Some by the OS: e.g. Windows
0 Some not by the OS: UNIX
0 GUI vs Command Line vs Touch Screen

Complete OS distributions have more than OS code

OKernd: the actua OS itself

aUtilities: User land code to make things work
OUNIX kernel aloneisrather useless!
OLinux distribution
OLinux Kernel (essentially same for al distros)
OGNU utilities
0 Other programs
O Each distro has a different set/ordering
OBSD distributions.....
oKernel -- unique to the xxxBSD
o Core Utilities
0O 3rd party Utilities (e.g. NetBSD pkgsrc, FreeBSD Ports)

System Calls

The way a User Process requests services from the kernel
O Syscall API (Application Programming Interface)

O Transition from "User mode" to "kernel mode"
O Controlled entry into the kernel

Types of system calls, see section 2.3.3 for examples
and Windows Vs Unix system calls

O Process Control

O File Management

O Device Management

O Information maintenance (time of day, getpid(),...)

0 Communications

O Protection

Library Routines
0O Often supplied as part of the Distro/OS
OlIntegrated into AP
O Part of some language .. e.g. C library

Operating System Design and Implementation

Design Goals
Okind of OS -- batch, real time, time sharing, mobile, embedded, paralld ...

O mechanisms and policies --

O separation

O policy regardless of mechanism

0 mechanism how to implement policy
dimplementation

0 Choice of programming language ...

Operating System General Structures
O Simple Structure (aka the big mess) / Monoalithic
O Layered approach (software belongs to a specific layer)
OMicrokernel and "servers', message passing
OModules (aka object oriented)
OHybrid systems (Mac OS X, i0S, Android)

Operating System Debugging
afixing errors, performance tuning, removing bottlenecks, ...

Virtua Machines

O Experiment with OSes (eg Toy OS)
OVM can provided idealized machines

OAbstract VMs (javaV M, ...)
OHelps with OS debugging
o Slow down the machine (possibly)
O Simulation can make things repeatable

Real OS debugging?
OWindows -- second machine as debugger
OKernel debuggers
Okernel dumps (blue screen or panic)

System boot ... How?

System boot ... How? (page 2)

O Turn on, enter program via buttons, push "run button"

OBasic Binary Loader, read "paper tape” or "mag tape"

Todays machines -- Boot process

O Power up starts running at location O.
OHardware typically maps a ROM image at location 0

o Or forces ajump to a ROM image
OROM has "machine monitor" program
OMay look for OS/Boot code on aDisk, net, ...

OQemu/ RISCV
0 gemu-system-riscv64 -kernel kernel-file -machine virt
O Starts execution at 0x1000
d...and a"ROM" does an immediate jJump to 0x8000000

