
 CS 447 - Operating Systems

 Syllabus (facultyweb.cs.wwu.edu/~phil/classes/f25/447)
 Assignments
 Toy Operating System, Toy File System

 Environment

 UNIX (Linux, OS X, NetBSD, FreeBSD)

 Machine RISCV -- very new architecture

 Toy OS ... object oriented OS written in C++

 Reading the book ... you should do it!

 C++ used in Toy OS

 C++ is a very large language ... won’t be using much of it.

 C is supposed to be a subset language. (But not quite!)

 Standard ideas used in 347 ... includes, functions, pointers, if, for, while, do, function parameters, ...

 Except ... libraries: ToyOS has its own, very few of the "normal" ones:

 Limited version of printf (kprintf inside the kernel)

 some string functions: mem* str* (not the full set, see include/string.h)

 C++ features used

 Objects: (Should be similar to java ... assuming you have used java objects)
 definition in .h files (mostly) (Well, I use .hxx files.)

 use of private and public members (no protected), friend classes/functions

 use of base classes and inheritance (include/list.hxx,lib/list.cxx, test/list_test.cxx)

 Test program uses "new" keyword for allocation of objects.

 Kernel does not use "new", no dynamic allocation of objects.

 use of "inline" functions, full declaration in .h file/Class definition

 object initialization via constructor

 Namespace (for lib::...) again, see list.hxx

 Call by reference parameters:

 C: void swap (int *x; int *y) { int z; z = *x; *x = *y; *y = z; }

 C++: void swap (int &x, int &y) { int z; z = x; x = y; y = z; }

 347 C: char *arg_parse(char *line, int *argcptr);

 C++: char *arg_parse(char *line, int &argc);

 None of the following things you may have heard about in C++

 templates, standard template library

 IOStream I/O

 Multiple inheritance, other advanced features of C++

 You will NOT be an expert on C++ at the end of this class.

 Introduction (Chapt 1)

 What is an operating system?
 Hardware manager

 Allows "user" (application) programs to utilize the hardware

 Two Views:

 User view: "Abstract machine"

 System View: glue between Abstract machine and real machine

 Computer systems architecture ...
 CPUs, single, multiple (SMP, parallel, distributed, clusters)

 Memory Hierarchy: registers, cache, main memory, SSD, HardDisk, ...

 I/O Devices: Disks, Tape, USB, video, ...

 Other: interrupts (read book), interrupt driven I/O, timers, ...

 Primary Hardware Mechanism
 Dual Mode: supervisor (system, privileged) vs user

 CPU hardware operation state

 User mode provides restriction of use of hardware

 Methods to switch between the two

 Multiprogramming -- Multiple programs in memory at the same time

 Multitasking -- runs multiple programs by switching between them or running at the same time

 Example: RISCV -- 3 modes: Machine, supervisor, user

 Other issues and abstractions

 Processes
 Abstraction for code execution

 Uses memory and Dual Mode mechanisms

 Process Management

 Other issues

 Memory Management

 File-System and Mass-Storage Management

 Caching

 I/O System Management

 Protection and Security

 Networking, Virtualization and Distributed Systems

 Special Purpose systems: real time, multimedia, handheld

 OS Data structures: lists, stacks, queues, hash tables, bit maps, ...

 Other Issues (page 2)

 Computing Environments
 Traditional Computing

 Mobile Computing

 Client-Server Computing

 Peer-to-peer Computing

 Cloud Computing

 Public, Private, Hybrid

 Real-Time Embedded

 Open Source Operating Systems

 Linux -- Senior CS Major started it ... (GNU utilities)

 BSD -- Berkeley Computer Science Research Group

 OpenIndiana -- Fork of Open Solaris when Oracle went to Solaris Express

 Plan 9 -- last release in 2015

 ReactOS -- Windows replacement

 Android -- cell/tablet... (Linux at the core)

 Several others ...

 Operating System Structures (Ch 2)

 Services
 Program Execution

 I/O operations

 File systems -- data storage

 Communications -- (process to process, network ...)

 Error Detection

 Resource Allocation (memory, disk, cpu time, ...)

 Accounting/Logging

 Protection and Security

 User Interface?

 Some by the OS: e.g. Windows

 Some not by the OS: UNIX

 GUI vs Command Line vs Touch Screen

 Complete OS distributions have more than OS code

 Kernel: the actual OS itself
 Utilities: User land code to make things work

 UNIX kernel alone is rather useless!

 Linux distribution

 Linux Kernel (essentially same for all distros)

 GNU utilities

 Other programs

 Each distro has a different set/ordering

 BSD distributions

 Kernel -- unique to the xxxBSD

 Core Utilities

 3rd party Utilities (e.g. NetBSD pkgsrc, FreeBSD Ports)

 System Calls

 The way a User Process requests services from the kernel
 Syscall API (Application Programming Interface)

 Transition from "User mode" to "kernel mode"

 Controlled entry into the kernel

 Types of system calls, see section 2.3.3 for examples

 and Windows Vs Unix system calls

 Process Control

 File Management

 Device Management

 Information maintenance (time of day, getpid(),...)

 Communications

 Protection

 Library Routines

 Often supplied as part of the Distro/OS

 Integrated into API

 Part of some language .. e.g. C library

 Operating System Design and Implementation

 Design Goals
 kind of OS -- batch, real time, time sharing, mobile, embedded, parallel ...

 mechanisms and policies --

 separation

 policy regardless of mechanism

 mechanism how to implement policy

 implementation

 Choice of programming language ...

 Operating System General Structures

 Simple Structure (aka the big mess) / Monolithic

 Layered approach (software belongs to a specific layer)

 Microkernel and "servers", message passing

 Modules (aka object oriented)

 Hybrid systems (Mac OS X, iOS, Android)

 Operating System Debugging

 fixing errors, performance tuning, removing bottlenecks, ...

 Virtual Machines

 Experiment with OSes (eg Toy OS)
 VM can provided idealized machines

 Abstract VMs (java VM, ...)

 Helps with OS debugging

 Slow down the machine (possibly)

 Simulation can make things repeatable

 Real OS debugging?

 Windows -- second machine as debugger

 Kernel debuggers

 kernel dumps (blue screen or panic)

 System boot ... How?

 System boot ... How? (page 2)

 Turn on, enter program via buttons, push "run button"

 Basic Binary Loader, read "paper tape" or "mag tape"

 Todays machines -- Boot process

 Power up starts running at location 0.
 Hardware typically maps a ROM image at location 0

 Or forces a jump to a ROM image

 ROM has "machine monitor" program

 May look for OS/Boot code on a Disk, net, ...

 Qemu / RISCV

 qemu-system-riscv64 -kernel kernel-file -machine virt

 Starts execution at 0x1000

 ... and a "ROM" does an immediate jump to 0x8000000

