Top Down Parsers

- Recursive Descent Parsers
 - Can be hand written (atl/0, Pascal-p4)
 - Can be "generated"

- Non-recursive predictive parsing
 - Table based PDA
 - Usually generated tables
 - Table: \(X \times a \rightarrow P \)
 - \(f(X,a) = P \) (P is a production)
 - Stack has what we expect to see in the reverse order.
- Top Down typically finds a leftmost derivation
Predictive Parsing Algorithm (LL)

Stack <-- G$ # G is goal non-terminal
Input <-- w$

a <-- first token of w
repeat
 X <-- top of stack
 if X is a terminal
 if X = a
 pop X, a <-- next token, possible semantic action
 else
 error
 else
 if M[X,a] = X -> Y1 ... Yk then
 pop X, push Yk Yk-1 ... Y1
 output X -> Y1 ... Yk, possible semantic action
 else
 error
 until X = $ (Stack is empty!)
If a is not EOF, error
Bottom up parsers (Shift reduce)

- Build tree from the bottom up
- Start with the leaves
- LR, operator Precedence
- Typically 2 tables
- Partial productions are on stack
- Finds a rightmost derivation (in reverse)
void shift_reduce_driver (void) {
 push (S0);
 T = scanner();
 while (TRUE) {
 S = top of stack;
 switch (action[S][T]) {
 case ERROR:
 handle_error();
 break;
 case ACCEPT:
 clean_up_and_finish();
 return;
 case SHIFT:
 push (go_to[S][T]);
 T = scanner();
 break;
 }
 }
}
case REDUCE:
 i = production number for X -> X1, X2, ... Xn;
 pop n symbols;
 S1 = top of stack;
 push (go_to[S1][X]);
 break;

}
Analysis of Grammars

Both methods need to analyze grammars

Parser generators need to read grammars:
- terminal
- non-terminals (variables)
- start symbol
- productions
 - left hand side
 - length of right hand side
 - symbols on right hand side
Nullable non-terminals

A is nullable iff $A \Rightarrow^+ \lambda$

1) mark all A such that $A \Rightarrow \lambda$

2) mark all B such that $B \Rightarrow C_1 \ldots C_n$
 and $C_1 \ldots C_n$ are marked nullable

3) repeat 2 until no more Bs can be marked

$S \rightarrow A\;B\;|\;C$

$A \rightarrow a\;A\;|\;a$

$B \rightarrow b\;B\;|\;\lambda$

$C \rightarrow c\;C\;|\;\lambda$
Follow and First sets

Follow(A) = set of terminal symbols that may follow A in some sentential form.

Follow(A) = \{ a in Terminals | S \rightarrow^+ alpha A a beta \}
union (if S \rightarrow^+ alpha A then \{ lambda \} else {})

First (alpha) = \{ a in Terminals | alpha \rightarrow^* a beta \}
union (if alpha \rightarrow^* lambda then \{ lambda \} else {})

First is set of first terminals in some sentential form
(often applied to variables ...)

if alpha = a beta, First(alpha) = \{ a \}
if alpha = A beta, First(alpha) =
First(A) union (if A is nullable First(beta) else {})
Computation of first and follow sets.

First (alpha)
let alpha = X1 ... Xn

if n = 0, return {lambda}
result <-- first[X1] - {lambda}
for (i = 2; i<= n; i++)
 if lambda in first[Xi-1]
 result <-- result union (first[Xi] - {lambda})
 else
 break

if (i == n+1 && lambda in first[Xn])
 result <-- result union {lambda}

return result
for all a in terminals set first[a] <-- {a}

for all A in variables
 if A -> lambda is a production
 first[A] <-- {lambda}
 else
 first[A] <-- {}

for all productions of the form A -> a beta
 first[A] <-- first[A] union {a}

do
 changes <-- false
 for all productions of the form A -> B beta
 first[A] <-- first[A] union First(B beta)
 if first[A] has changed, changes <-- true
until no changes
Sample Grammar

p -> BEGIN stmts END
stmts -> stmt ";" stmts
stmts ->
stmt -> SSTMT
stmt -> BEGIN stmts END

first sets:

BEGIN: BEGIN
END: END
SSTMT: SSTMT
;: ;
p: BEGIN
stmts: Lambda SSTMT BEGIN
stmt: SSTMT BEGIN
Follow Set Algorithm

a) for A in Variables follow[A] <-- {}

b) follow[S] <-- {Lambda}

c) do
 changes <-- false
 for each production of the form A -> alpha B beta
 follow[B] <-- follow[B] union (First(beta) - {Lambda})
 if (Lambda in First(beta)) then
 follow[B] <-- follow[B] union follow[A]
 if (follow[B] has changed)
 changes <-- true
 end for
until no changes
Another example

1) S -> a S z
2) S -> A
3) A -> b A y
4) A -> B
5) A -> Lambda
6) B -> c B x
7) B -> m

first sets:
S: a b Lambda c m
A: b Lambda c m
B: c m

follow sets:
S: z Lambda
A: y z Lambda
B: x y z Lambda
Parser Generators

Top Down

Given a "lookahead" token, predict the rule to push.

Predict function ... know the difference between

- A -> X1 Xn
- A -> Y1 Yn

Predict (A -> X1 ... Xn) =

if lambda in First(X1 ... Xn) then
 (First(X1 ... Xn) - {lambda}) union follow[A]
else
 First(X1 ... Xn)
1) \(S \to a \, S \, z \)
 \(a \)
2) \(S \to A \)
 \(b \, c \, m \, z \)
3) \(A \to b \, A \, y \)
 \(b \)
4) \(A \to B \)
 \(c \, m \)
5) \(A \to \text{Lambda} \)
 \(y \, z \)
6) \(B \to c \, B \, x \)
 \(c \)
7) \(B \to m \)
 \(m \)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>m</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>