LR Parsers

Definition: $\text{First}_k(x) =$ first k symbols of x.
(x is a string of terminals)

A grammar is LR(k) iff

- $S \Rightarrow^* \alpha A w \Rightarrow \alpha \beta w$
- $S \Rightarrow^* \gamma B x \Rightarrow \alpha \beta y$
- $\text{First}_k(w) = \text{First}_k(y)$

Imply that $\alpha A w = \gamma B x$.

- same context (alpha)
- same lookahead ($\text{First}_k(w), \text{First}_k(y)$)
LR(0) -- No Lookahead

Not a practical parser generator

Parser Construction

- Based on the idea of a "configuration" or "item"
 \[A \to X_1 \ldots X_i . X_{i+1} \ldots X_j \]

- And on a set of items
 \begin{align*}
 &\text{stmt} \to \text{ID} . := \text{expr} \\
 &\text{stmt} \to \text{ID} . : \text{stmt} \\
 &\text{stmt} \to \text{ID} .
 \end{align*}

ID has been matched, but nothing following
all three are possibilities
Building Configuration Sets (Item Sets)

- Assume S is start symbol
- Add new start symbol

 $S' \rightarrow S \, \$ \quad (\$ \text{ is EOF})$

- Initial set, S_0, STARTS as:

 $\{ S' \rightarrow . \ S \, \$ \}$

- Closure is next:

 - $\cdot \ A \Rightarrow$ All $A \rightarrow Y_1 \ldots Y_n$ need to be added

 - $A \rightarrow \cdot \ Y_1 \ldots Y_n$ is added
LR(0) Example

S -> E $
E -> E + T | T
T -> ID | (E)

□ Initial set, S_0
 { S -> . E $ }

Algorithm Closure_LR0 (set S)
 repeat
 for all items B -> alpha . A beta in S, A in Variables
 add all items of the form A -> . gamma to S
 until no new items can be added
Set S_0

$S \rightarrow E \$ \\
E \rightarrow E + T \mid T \\
T \rightarrow ID \mid (E)$

Initial set, S_0

\{ $S \rightarrow . E \$ \}

Closure$_{LR0} (S_0)$:

\{ $S \rightarrow . E \$
 $E \rightarrow . E + T$
 $E \rightarrow . T$
 $T \rightarrow . ID$
 $T \rightarrow . (E)$ \}
GoTo Algorithm

- Compute "successor" states from a state
- For an item: $A \rightarrow \alpha . X \beta$ a new set is started
- Based on the $\cdot X$ part (X a terminal or variable)

Algorithm go_to_LR0 (Set S, symbol X)

New set is S'

1) $S' \leftarrow \{ \}$

2) for each configuration C in S where C is of the form
 $A \rightarrow \alpha . X \beta$
 Add $A \rightarrow \alpha X . \beta$ to S'

3) compute closure_LR0 (S')

4) return S'
Go to of S_0

$$S_0 = \{ S \rightarrow . E \, $ \\
E \rightarrow . E + T \\
E \rightarrow . T \\
T \rightarrow . \text{ID} \\
T \rightarrow . (\, E \,) \, \}$$

$$S_1 = \{ S \rightarrow E \, . \, $ \\
E \rightarrow E \, . \, + \, T \, \}$$

$$S_2 = \{ E \rightarrow T \, . \, \}$$

$$S_3 = \{ T \rightarrow \text{ID} \, . \, \}$$

$$S_4 = \{ T \rightarrow (\, . \, E \,) \, \} \quad -- \text{but must do closure}$$
LR0 Sets (Page 2)

\[
S_4 = \{ \begin{align*}
T & \rightarrow (. E) \\
E & \rightarrow . E + T \\
E & \rightarrow . T \\
T & \rightarrow . ID \\
T & \rightarrow . (E)
\end{align*} \}
\]

This finishes up the go_to for S_0!

\[
S_5 = \{ S \rightarrow E \$. \} \quad \text{(From S_1)}
\]

\[
S_6 = \{ E \rightarrow E + . T \} \quad \text{(From S_1) (needs closure)}
\]

\[
S_6 = \{ E \rightarrow E + . T \\
T & \rightarrow . ID \\
T & \rightarrow . (E) \}
\]
LR0 Sets (Page 3)

\[
S_7 = \{ \ T \rightarrow (\ E \ .) \ \text{(From S}_4) \\
 \ E \rightarrow E \ . + T \ \}
\]

\[
S_8 = \{ \ E \rightarrow E + T \ . \ \text{(From S}_6)
\]

\[
S_9 = \{ \ T \rightarrow (\ E \) . \ \text{(From S}_7)
\]

Draw State diagram
Algorithm to Build CFSM

CFSM = Characteristic finite state machine

Algorithm Build_CFSM_LR0 (Grammar G)
 1) Let S_0 = closure_LR0({S’ -> . S $})
 2) S = { S_0 }
 3) While S is not empty do
 remove set s from S.
 for all X in s where . X is part of a config
 if go_to_LR0 (s, X) is new,
 add go_to_LR0 (s, X) to S with a new state number
 create a transition under X from s to go_to_LR0 (s, X)
LR Parser tables

Build Action from information in CFSM
- Transitions are Shift
 - \{ S' -> S . $ \} => Accept
 - \{ A -> alpha . \} => reduce A -> alpha

Build Go_to table from CFSM
 Basically the table form of the CFSM.
Go_To Table for the example grammar

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>E</td>
<td>T</td>
<td>ID</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Action Table

<table>
<thead>
<tr>
<th>ID</th>
<th>Action 1</th>
<th>Action 2</th>
<th>Action 3</th>
<th>Action 4</th>
<th>Action 5</th>
<th>Action 6</th>
<th>Action 7</th>
<th>Action 8</th>
<th>Action 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>R3</td>
<td>R3</td>
<td>R3</td>
<td>R3</td>
<td>R3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>R4</td>
<td>R4</td>
<td>R4</td>
<td>R4</td>
<td>R4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>R2</td>
<td>R2</td>
<td>R2</td>
<td>R2</td>
<td>R2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>R5</td>
<td>R5</td>
<td>R5</td>
<td>R5</td>
<td>R5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Other things ...

Example parse
id + (id + id)

Errors in grammars

Shift-Reduce conflict

{ X -> ... ID .
 Y -> ... ID . XYZ }

Reduce-Reduce conflict

{ X -> ... ID .
 Y -> ... ID . }
SLR(0) parser tables

a) Compute LR(0) Sets

b) State i is constructed from S_i in the LR(0) Sets as:

a) if A -> alpha . a beta in S_i
 and goto(S_i,a) = S_j then
 action [i, a] <-- Shift : j

b) if A -> alpha . in S_i then
 action[i,a] <-- Reduce A -> alpha, a in follow[A] (A != S')

c) if S' -> S . $ in S_i then
 action[i,$] <-- Accept

d) if A -> alpha . B beta in S_i
 and goto(S_i, B) = S_j then
 goto[i,B] <-- j

e) All other entries in action are error
LR(1) Parsing

Similar ideas except we add a "lookahead" to the items

\[A \rightarrow X_1 \ldots X_i \cdot X_{i+1} \ldots X_j, \ a \ (a \ is \ terminal \ or \ lambda) \]

\(a \) is the lookahead at the end of the production!

May have many similar items with different lookaheads

May be written:

\[A \rightarrow X_1 \ldots X_i \cdot X_{i+1} \ldots X_j, \ \{a_1, \ldots a_m\} \]

Initial set looks like: (Before closure)

\[\{ S' \rightarrow \ S \$, \ \{ \lambda \} \} \]
LALR(1)

- More powerful than SLR(1)
- Less powerful than LR(1)
- Complicated way to merge LR(1) configuration sets
- Ignore details
- On to other things !!!