Chapter 4: Grammars and Parsing

Context-Free Grammars:

- Terminal Vocabulary: (Terminals, Vt)
- Intermediate symbols: (non-terminals, variables, Vn)
- Start symbol (non-terminal) S
- Productions of the form \(A \rightarrow X_1 X_2 \ldots X_m \)
 - \(A \) is a non-terminal
 - \(X_1 \) is a terminal or a non-terminal
 - valid: \(A \rightarrow \)

- Start with \(S \) and rewrite using productions until all terminals
 - Derivation: \(A \Rightarrow U_1 \ldots U_n \Rightarrow \ldots \Rightarrow a_1 \ldots a_m \)
 - Sentential form: Any "string" along the derivation
 - Sentence: final form with no non-terminals
Conventions:
- a, b, c $\rightarrow V_t$
- A, B, C $\rightarrow V_n$
- U, V, W $\rightarrow V$ (V_t + V_n)
- Alpha, Beta, Gamma $\rightarrow V^*$
- u, v, w $\rightarrow V_t^*$

Leftmost derivation:
- A $\Rightarrow_{lm} X_1 X_2 \ldots X_m = \Rightarrow_{lm} Y_1 \ldots Y_n X_2 \ldots X_m$
- All steps replace the leftmost non-terminal

Rightmost derivation
- X_1 X_2 \ldots X_m = \Rightarrow_{rm} X_1 \ldots X_{m-1} Y_1 \ldots Y_n
- All steps replace the rightmost non-terminal
Parse tree:

A parse tree ... tree form of derivation
- A parse tree many have lots of derivations.
- Each parse tree has one leftmost derivation
- Each parse tree has one rightmost derivation
- Some sentences have more than one parse tree
 - Grammars like this are ambiguous BAD grammar!
 - Also have more than one leftmost and rightmost derivations.

Language:
- given grammar G, L(G) is the "language" generated by G.
- L(G) is the set of all possible terminal strings w where S =>* w.
What is a PARSE?

Given a grammar and a string x, answer the question(s)

- Is x a member of $L(G)$?
- If so, what is its parse tree?

Other grammars and issues:

- Regular Grammar: $A \rightarrow a \ B$ or $C \rightarrow d$ rules only
- Context Sensitive:
 - $\alpha \ A \ \beta \rightarrow \alpha \ \delta \ \beta$
- Does a grammar generate the language you want?