
Coding style for Dr. Nelson’s classes

In an effort to be able to grade your assignments more effectively and to know
for sure who wrote the code, the following are a list of coding standards your
programs must follow.

File Header At the top of each each file you must have a comment that identifies the
programmer, when the file was started, the class for which the file is
written and the assignment number. This should be before any kind of
code. If you have a CVS comment, this comes after the CVS comment.

Indentation How you do your indentation can make your program readable or un-
readable. You should use an indentation of 2, 4 or 8 characters. Be
consistent.

Long Lines Long lines should be avoided. Printing devices tend to not have as long
lines as current displays. Lines should be short enough to be printed
on a single line without continuations.

C/C++ .h Files When coding in C or C++, .h files must include a mechanism that
keeps multiple inclusions from being a problem. Use either the #ifdef,
#define, #endif method or the pragma method.

Global Variables Global variables should be limited to information that is needed by a
majority of your program. Using arguments to functions is, in many
cases, the better option. On the other hand, if you find your code
passing the same arguments to most of your functions, that may be an
indication that they should be global variables.

Variable Names Variable names should describe the contents in some way. Be reason-
able about the length. Two character names may be OK when the
variable contents are easily understood with two characters. For exam-
ple, I would consider “index” or “ix” as valid variable names. I would
not consider “ao” to be a valid name when something like “availableob-
jects” or “availobjs” might be better. Also, be careful in using too many
characters. Very long variable names may make code more unreadable.

1



Variable Declarations At each variable declaration, you should include a comment that more
fully describes the variable than just the name. I should not see any
code that looks similar to:

int a, b, c=0;

char *bf[200], that;

They should be more like:

int availobjs; // Number of available objects for use.

int bufsize; // Number of elements in buffer.

char *buffer[200]; // Buffer for input.

Functions If you find yourself doing the same thing over and over again with slight
modifications, try to find a way to factor out that code and turn it into
a function that takes parameters that allow the slight differences.

Comments The goal of comments is for readability and to help someone reading
the code understand the code. (Often the person reading the code is
the person who wrote it and good comments help you remember what
you were thinking when you wrote the code.) Over-commenting is a
problem. With too many comments it is difficult to see the code or
the comment just says in words what the code says. For example, the
following comment is worthless.

/* Assign x the value of y plus z. */

x = y + z;

Under-commenting is also a problem. Code that has no comments or
very few comments is also likely to be unreadable or much more difficult
to read.

Comments before functions that describe the functions and their pa-
rameters are good. This especially true for parameters that are in/out
or out parameters. Pre and post conditions are appropriate here but
are not required. Comments before loops should give the idea of what
the loop is doing. Loop invariants here are appropriate but are not
required.

2



Attribution In the few cases where you may use code that you didn’t write, make
sure it is given proper attribution. Part of the attribution must be in
the file header at the top of the file. Also, if your file is some of your
code and some code from another source, make sure each transition is
clearly marked. If you are using modified code, make sure you clearly
mark what is modified code. Your attribution must include the source
of the code and how to get a copy.

Be Consistent Consistency in style improves readability.

Last modified: October 8, 2009

3


