Example BLITZ Assembly Program

Example.s -- Serial I/O Interface Routines
Harry Porter - 08/01/01

This program serves as an example of BLITZ assembly code and
of the recommended style for indenting and commenting assembly code.

This program provides a "main" function which reads input characters
from the terminal and echoes them back. It can be used to explore
the differences between "raw" and "cooked" serial input modes.

In addition to the "main" function, this program also provides the
following interface for the serial I/O device; these routines might
provide the starting point for some other program.

.export getChar

.export putChar

.export putString

.export flush

.export initSerial
.export checkSerialDevice

! Program entry point

.text
_entry:

Here is the interrupt vector, which will be loaded at address 0x00000000.
Each entry is 4 bytes. They are located at fixed, pre-defined addresses.
This program will only handle SERIAL_INTERRUPTS. The asynchronous,
hardware interrupts (i.e., TIMER and DISK) will be ignored by returning
immediately. None of the other interrupts should occur; if they do, this

!
!
!
!
!
!
! program will get stuck in an infinite loop.
!

PowerOnReset:

jmp main
TimerInterrupt:

reti
DiskInterrupt:

reti
SerialInterrupt:

jmp SerialInterruptHandler
HardwareFault:

jmp HardwareFault
IllegalInstruction:

jmp IllegalInstruction
ArithmeticException:

jmp ArithmeticException
AddressException:

jmp AddressException
PageInvalidException:

jmp PageInvalidException
PageReadonlyException:

jmp PageReadonlyException
PrivilegedInstruction:

jmp PrivilegedInstruction
AlignmentException:

jmp AlignmentException

ExceptionDuringInterrupt:

September 18, 2007

Page D-1



Example BLITZ Assembly Program

jmp ExceptionDuringInterrupt
SyscallTrap:
jmp SyscallTrap

!

! Interrupt Service routines

!

SerialInterruptHandler:
call checkSerialDevice
reti

main

The main program repeatedly prints a prompt, then gets and echoes characters
until a NEWLINE is entered. It then repeats the prompt.

main:
set STACK_START, rl5 ! initialize the stack pointer
call initSerial ! initialize the serial I/O device
seti ! enable interrupts
loopl: ! loop
set prompt,rl ! putString ("Enter something: ")
call putString ! .
loop2: ! loop
call getChar ! rl := getChar
cmp rl,'\n' ! if (rl == '\n' or '\r') then
be then !
cmp rl,'\r' !
bne else !
then: !
mov "\r',rl ! putChar ('\r')
call putChar ! .
mov ‘\n',rl ! putChar ('\n')
call putChar ! .
jmp exit ! break
else: ! else
cmp rl,'q' ! if (rl == 'q') then
bne else2 ! .
set bye,rl ! print "Good bye"
call putString ! .
call flush ! wait until I/O completes
debug ! Invoke DEBUG instruction
jmp cont ! else
else2: !
call putChar ! putChar (rl)
cont: ! end
jmp loop2 ! end
exit: ! .
jmp loopl ! end
prompt: .ascii "Enter something (or 'q' to terminate): \n\r\0"
bye: .ascii "\n\rAbout to execute DEBUG instruction (type 'go' to resume)...
\n\r\o0o"
.align
getChar

This routine reads one character from the terminal and returns it in rl.
It does not echo the character or process special characters in any way.
It checks the input buffer and gets a character from there if one is
available. Otherwise, it waits for a key to be typed.

September 18, 2007 Page D-2



Example BLITZ Assembly Program

rl = the character
r2 = addr of inBufferCount
r3 = inBufferCount

r4 = addr of inBufferOut
r5 = inBufferOut

Registers modified: rl

getChar:

store r5,[r4] save inBufferOut

push r2 ! save registers
push r3 !
push r4 !
push r5 t.
set inBufferCount,r2 ! initialize address registers
set inBufferoOut, r4 r.
getChLoop: ! loop
! loop
cleari ! disable interrupts
load [r2],r3 ! if (inBufferCount != 0)
cmp r3,0 !
bne getChExit ! then break
seti ! enable interrupts
jmp getChLoop ! end
getChExit: ! .
sub r3,1,r3 ! inBufferCount --
store r3,[r2] ! .
load [rd4],r5 ! rl := *inBufferOut
loadb [r5],rl ! .
add r5,1,r5 ! inBufferOut ++
cmp r5,inBufferEnd ! if (inBufferOut == inBufferEnd)
bne getChElse !
set inBuffer,r5 ! inBufferOut := &inBuffer
getChElse: ! end
!
!
!
!
!
!
!
!
!

seti enable interrupts
cmp rl,'\0' until (rl != '\0")
be getChLoop .
pop r5 restore regs
pop r4
pop r3
pop r2 .
ret return
putChar
This routine is passed a character in rl. It writes it to the terminal

exactly as it is. Normally, the output character is added to a buffer
and will be written as soon as the device is ready. If the buffer is
full, this routine will busy-wait for the buffer to become not-full.

rl = the character

r2 = addr of outBufferCount
r3 = outBufferCount

r4 = addr of outBufferln

r5 = outBufferIn

Registers modified: none

putChar:

push r2 ! save registers
push r3 !
push r4 !
push r5 t.
set outBufferCount,r2 ! initialize address registers
set outBufferIn,r4 ro.
putChLoop: ! loop

September 18, 2007

Page D-3



cleari
load
cmp
bl
seti
jmp
putChExit:
add
store
load
storeb
add
cmp
bne
set
putChElse:
store
call
seti
pop
pop
pop
pop
ret

putString

Example BLITZ Assembly Program

[r2],r3
r3,BUFFER_SIZE
putChExit

putChLoop

r3,1,r3

r3,[r2]

[r4],r5

rl,[r5]

r5,1,r5
r5,outBufferEnd
putChElse
outBuffer,r5

r5,[r4]
checkSerialDevice

r5
rd
r3
r2

disable interrupts
if (outBufferCount < BUFFER_SIZE)

then break
enable interrupts
end

outBufferCount ++
*outBufferIn := rl

outBufferIn ++
if (outBufferIn == outBufferEnd) then

outBufferIn := &outBuffer
end
save outBufferIn
start output if necessary
enable interrupts
restore regs

return

This routine is passed a pointer to a string of characters, terminated

calling 'putChar' repeatedly.

Registers modified: none

!
!
!
!
! by '\0'.
!
!
!
]

putString:
push
push
mov

putStLoop:
loadb
add
cmp
be
call
jmp

putStExit:
pop
pop
ret

flush

push
push
flushLoop:
cleari
set
load

rl
r2
rl,r2

[r2],rl
r2,1,r2
rl,0
putStExit
putChar
putStLoop

r2
rl

Registers modified: none

rl
r2

outBufferCount,rl
[rl],r2

September 18, 2007

It sends all of them except the final '\0' to the terminal by

save registers

r2 := ptr into string
loop
rl := next char
incr ptr
if (rl1l == '\0")
then break
putChar (rl)
end

restore regs

return

This routine waits until the output buffer has been emptied, then returns.
It busy-waits until the buffer has been emptied.

save registers

loop

disable interrupts
r2 = outBufferCount

Page D-4



Example BLITZ Assembly Program

cmp r2,0 !
be flushLoopEx !
seti !
jmp flushLoop !
flushLoopEx: !
seti !
pop r2 !
pop rl !
ret !
initSerial

Registers modified: rl, r2

initSerial: set
set
store
set
store
set
set
store
set
store
clr
set
store
set
store
ret

checkSerialDevice

is ready on the input,

error indication.

checkSerialDevice:

push rl
push r2
push r3
September 18, 2007

inBuffer,rl
inBufferIn,r2
rl,[r2]
inBufferoOut, r2
rl,[r2]
outBuffer,rl
outBufferIn,r2
rl,[r2]
outBufferOut,r2
rl,[r2]

rl
inBufferCount, r2
rl,[r2]
outBufferCount,r2
rl,[r2]

This routine is called whenever there is a SeriallInterrupt.
it is moved into the inBuffer.
more room in the buffer, the character is simply dropped, with no

If the output device is ready to for another character
and there are any characters in the outBuffer, then the next character is
transmitted to the output device.

No arguments, no result.
This routine must be called with interrupts disabled!
Registers modified: none

r8 = addr of SERIAL STATUS_WORD
rl = SERIAL STATUS_WORD

rll = addr of SERIAL_DATA_ WORD
r2 = the character

r9 = addr of inBufferCount

r5 = inBufferCount

rl0 = addr of inBufferlIn

r3 = inBufferlIn

r7 = addr of outBufferOut

r4 = outBufferOut

r6 = addr of outBufferCount

r5 = outBufferCount

if (r2 == 0)
break
re-enable interrupts
end
re-enable interrupts
restore regs

return

!
!
!
! This routine initializes the serial input and output buffers.
!
!
!

inBuferIn = &i

inBufferOut =

outBufferIn =

outBufferOut =
inBufferCount
outBufferCount

return

If ther

save all registers we

nBuffer

&inBuffer

soutBuffer

sgoutBuffer

=0

=0

If a character

e is no

use

Page D-5



push
push
push
push
push
push
push
push
set
set
load
btst
be
load
set
load
cmp
bge
set
load
storeb
add
store
add
cmp
bne
set
end2:
store
endl:

btst
be
set
load
cmp
ble
set
load
loadb
store
sub
store
add
cmp
bne
set
end3:
store
end4:

pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
pop
ret

BUFFER_SIZE
inBuffer:
inBufferEnd:

r4

r5

r6

r7

r8

r9

rl0

rll
SERIAL_DATA,rll
SERIAL_STAT,r8
[r8],rl
0x00000001,r1
endl

[rll],r2
inBufferCount, r9
[r9],r5
r5,BUFFER_SIZE
endl
inBufferIn,rl0
[r10],r3
r2,[r3]
r5,1,r5
r5,[r9]
r3,1,r3
r3,inBufferEnd
end2
inBuffer,r3

r3,[rl0]

0x00000002,r1
end4

outBufferCount,r6

[r6],r5

r5,0

end4
outBufferOut,r7
[r7],r4

[rd],r2
r2,[rll]
r5,1,r5

r5,[r6]

rd,1l,r4

r4 ,outBufferEnd
end3
outBuffer,r4

rd4d,[r7]

rll
rlo0
r9
r8
r7
ré
r5
r4
r3
r2

.data
= 128
.skip

September 18, 2007

Example BLITZ Assembly Program

BUFFER_SIZE !

rll

= addr of SERIAL_DATA_ WORD
rl := serial status word
if status[charAvail] == 1 then
r2 := input char

if inBufferCount < bufSize then

*inBufferIn :=

inBufferCount++

inBufferIn++
if inBufferIn

char

inBufferEnd then

inBufferIn = &inBuffer
end
store inBufferIn
end
end

if status[outputReady] == 1 then

if outBufferCount>0 then

end

restore all registers

r2 :=

*outBufferOut

send char in r2 to serial output

outBufferCount--

outBufferOut++

if outBufferOut==

outBufferOut =
end

outBufferEnd then

sgoutBuffer

store outBufferOut
end

return

Serial Input buffer area



inBufferIn:
inBufferOut:
inBufferCount:

outBuffer:
outBufferEnd:
outBufferIn:
outBufferOut:

outBufferCount:

STACK_START
SERIAL_STAT
SERIAL_DATA

.word
.word
.word

.skip
.word

.word
.word

September 18, 2007

Example BLITZ Assembly Program

o

BUFFER_SIZE

0
0
0

0x00££££00
0x00££££00
0x00f£f££f04

Addr of next place to add to
Addr of next place to remove from
Number of characters in inBuffer

Serial Output buffer area
Addr of next place to add to

Addr of next place to remove from
Number of characters in outBuffer

Addr of SERIAL_STATUS_WORD
Addr of SERIAL_DATA_ WORD

Page D-7



