1. Deterministic Finite Automata. Homeworks are p. 78: 2.1.2, 2.1.3, 2.1.7; p. 79: 2.2.1, 2.2.3, 2.3.1, 2.3.2, 2.3.3, 2.4, 2.5, 2.6; p. 81: 2.9, 2.11, 2.12, 2.13; p. 82: 2.14.1, 2.15, 2.16, 2.21, 2.22

- parity of incoming ones:

- even count of zeros after rightmost one:

- Definition: A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q, F)$, where
 - Q is a finite set of states
 - Σ is a finite alphabet of symbols
 - $\delta : Q \times \Sigma \rightarrow Q$ is a function (the transition function)
 - $q \in Q$ is the start state
 - $F \subseteq Q$ is a collection of accepting states.

- The transition function is a program.

- Note tabular display of the transition function.

- For a set of symbols, Σ, we let Σ^* denote the set of finite strings composed of symbols from Σ.

- A language over Σ is a subset of Σ^*.

- Definition: Let $M = (Q, \Sigma, \delta, q, F)$ be an DFA, and let $w = w_1, w_2, \ldots, w_n \in \Sigma^*$. Let r_0, r_1, \ldots, r_n be a sequences of states from Q such that $r_0 = q$ (from the machine definition), and $r_{i+1} = \delta(r_i, w_i)$ for $i = 1, 2, \ldots, n$. If $r_n \in F$, we say that M accepts w. If $r_n \notin F$, we say that M rejects w.

- Definition: Let $M = (Q, \Sigma, \delta, q, F)$ be an DFA. Then, $L(M) = \{ w \in \Sigma^* : w$ is accepted by $M \}$ is the language accepted by M.

- Definition: A language $A \subseteq \Sigma^*$ is a regular language if there exists an DFA M such that $A = L(M)$. Note two examples of regular languages at top: “even count of ones” and “even count of zeros after rightmost one.”

- Given DFA $M = (Q, \Sigma, \delta, q, F)$, define $\bar{\delta} : Q \times \Sigma^* \rightarrow Q$ via

$$\bar{\delta}(r, w) = \begin{cases} r, & w = \epsilon \\ \delta(\bar{\delta}(r, v), a), & w = va, \text{ for } v \in \Sigma^* \text{ and } a \in \Sigma \end{cases}$$

- In terms of $\bar{\delta}$, $L(M) = \{ w \in \Sigma^* : \bar{\delta}(w) \in F \}$.

• Binary string contains 101 as substring:

• Binary string that contains a one in the third position from the right. Use \(q_{000}, \ldots, q_{111} \) to track last three symbols at any given point in the scan...

• Operations on languages. For languages \(A, B \subseteq \Sigma^* \):
 - (union) \(A \cup B = \{ w : w \in A \text{ or } w \in B \} \)
 - (concatenation) \(AB = \{ w : w = uv \text{ for } u \in A, v \in B \} \)
 - (Kleen closure, star) \(A^* = \{ w_1, w_2, \ldots, w_k : k \geq 0, w_i \in A \text{ for } 1 \leq i \leq k \} \)

• Kleene closure notation consistent with \(\Sigma^* \) notation, where we regard \(\Sigma \) as a language containing a finite number of one-character strings.

• Note Kleene closure of any language contains \(\epsilon \). So, if \(A = \phi \), then \(A^* = \{ \epsilon \} \)

• Examples using \(A = \{0, 01\}, B = \{1, 10\} \)...

• For any language \(A \subseteq \Sigma^* \), define
 \[
 A^0 = \{ \epsilon \} \\
 A^1 = A \\
 A^2 = AA \\
 \text{and so forth. In general } A^k = AA^{k-1} \text{ and } A^* = \bigcup_{k=0}^{\infty} A^k.
 \]

• Theorem: The set of regular languages is closed under union operations. That is, if \(A, B \) are regular languages over the same alphabet, then \(A \cup B \) is a regular language.

 Proof: Note: cannot “run” on \(A \) then, having failed, run on “B.” A machine gets a single pass over the input string.

 But, can construct a Cartesian product machine...

• Regular languages closed under complementation: Exchange accepting and non-accepting status for states in accepting DFA for \(L \). New machine accept \(L^c \).

• Note problems in proving closure under concatenation and Kleene closure...

• In a non-deterministic machine \(NFA \), a machine has several possibilities (including none) at each state
 - The machine may choose to move to one or more states on consuming a given input symbol
 - The machine may choose to move to one or more states without consuming the input symbol
 - The machine may have no choices for a particular input symbol (computation “dies” on that input)

• Binary string contain 101 or 11:

• Trace clones of NFA above for input 010110.
• Binary string with 1 in third place from right:
 DFA had eight states.

• Binary string with zero count = 0 mod 2 or mod 3:

• Definition: A nondeterministic finite automaton (NFA) is a 5-tuple $M = (Q, \Sigma, \delta, q, F)$ with

 – Q is a finite set of states

 – Σ is a finite set (alphabet) of symbols

 – $\delta : Q \times (\Sigma \cup \{\epsilon\}) \rightarrow P(Q)$

 – $q \in Q$ is the start state

 – $F \subseteq Q$ is a set of accepting states.

• Earlier example

• Definition: Let $M = (Q, \Sigma, \delta, q, F)$ be an NFA and let $w = w_1w_2 \ldots w_m \in \Sigma^*$. We say that M accepts w if there exists a state sequence $r_0, r_1, \ldots, r_m \in Q$ with

 – $r_0 = q$

 – For $0 \leq i < m$, $r_{i+1} \in \delta(r_i, y_{i+1})$

 – $r_m \in F$. Otherwise, we say M rejects w.

• Definition: $M = (Q, \Sigma, \delta, q, F)$ be an NFA. Then the language $L(M)$ accepted by M is

 $L(M) = \{w \in \Sigma^* : M$ accepts $w\}$.

• Definition: Let $M = (Q, \Sigma, \delta, q, F)$ be an NFA. For $q \in Q$, the ϵ-closure of q is

 $C_\epsilon(q) = \{r \in Q : r$ can be reached from q by one or more ϵ-transitions\}.

• Example: $C_\epsilon(q_1) = \{q_1, q_2\}$:

• Theorem: If $N = (Q, \Sigma, \delta, q, F)$ is an NFA, then there exists a DFA M such that $L(M) = L(N)$.
 Also, if $M = (Q, \Sigma, \delta, q, F)$ is a DFA, then there exists an NFA N such that $L(N) = L(M)$.

Proof: Note DFA to NFA is trivial: convert \(\delta \) by replacing all entries in the tabulation with singleton sets and add an \(\epsilon \) columns with all \(\phi \) entries.

To convert an NFA to a DFA, we will construct a DFA whose state space is the power set of the NFA state space.

Intuition: The constructed DFA, after reading a prefix, say \(w \), of the input will is a subset, which is precisely those states that the NFA could occupy after reading the same prefix...

Here is the construction:

Given \(NFA = (Q, \Sigma, \delta, q, F) \), we construct \(DFA = (Q', \Sigma', \delta', q', F') \), where

- \(Q' = P(Q) \)
- \(q' = C_\epsilon(q) \)
- \(F' = \{ A \in Q' : A \cap F \neq \phi \} \)
- For \(A \in P(Q) \), define \(\delta'(A, a) = \cup_{r \in A} C_\epsilon(\delta(r, a)) \)

Trace accepting path in NFA as accepting path in DFA — ditto for non-accepting paths

Trace accepting path in DFA as accepting path in NFA — ditto for non-accepting paths. •

• Theorem: Language \(A \) is regular if and only if there exists an NFA \(N \) with \(A = L(N) \).

\[\]

• Example: Convert to DFA:

\[\]

Short conversion:

\[\]

<table>
<thead>
<tr>
<th>[\rightarrow *{1, 2}]</th>
<th>[a]</th>
<th>[b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[*{1, 2, 3}]</td>
<td>[{1, 2, 3}]</td>
<td>[\phi]</td>
</tr>
<tr>
<td>[*{2, 3}]</td>
<td>[{1, 2}]</td>
<td>[{2, 3}]</td>
</tr>
<tr>
<td>[\phi]</td>
<td>[\phi]</td>
<td>[\phi]</td>
</tr>
</tbody>
</table>
2. Theorem: Regular language are closed under union. That is, A, B regular implies $A \cup B$ regular.

Proof: New start state with ϵ-transitions to start states of A, B NFAs. Keep accepting states in both.

3. Theorem: Regular languages are closed under concatenation. That is, A, B regular implies AB regular.

Proof: New NFA has start state from A. All accepting states from A get ϵ-transitions to start state of B. Remove accepting status from all such states in A. Keep accepting status for all such states in B.

4. Theorem: Regular languages are close under Kleene closure.

Proof: Modify NFA N that accepts language L. New starting/accepting states — to accept ϵ string. New start gets ϵ-transition to start state of M. All accepting states of M get ϵ-transition to start state of M.

Long conversion:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ</td>
<td>ϕ</td>
<td>ϕ</td>
</tr>
<tr>
<td>${1}$</td>
<td>${3}$</td>
<td>ϕ</td>
</tr>
<tr>
<td>$*{2}$</td>
<td>${1,2}$</td>
<td>ϕ</td>
</tr>
<tr>
<td>${3}$</td>
<td>${2}$</td>
<td>${2,3}$</td>
</tr>
</tbody>
</table>

$\rightarrow *\{1,2\}$ $\rightarrow *\{1,2\}$ $\rightarrow *\{1,2\}$ $\rightarrow *\{1,2\}$ $\rightarrow *\{1,2\}$