3. Suppose \(a, b \in \mathbb{Z} \). If \(a^2(b^2 - 2b) \) is odd, then \(a \) and \(b \) are odd.

 Proof: (by contrapositive)

 Suppose it is not the case that \(a \) and \(b \) are odd.

 Then, either \(a \) is even or \(b \) is even.

 Case (a): If \(a \) is even, then for some integer \(x \),
 \[
a = 2x
 \]
 \[
a^2(b^2 - 2b) = 4x^2(b^2 - 2b) = 2[2x^2(b^2 - 2b)],
 \]
 which implies \(a^2(b^2 - 2b) \) is even. So, \(a^2(b^2 - 2b) \) is not odd.

 Case (b): If \(b \) is even,
 \[
b = 2y
 \]
 \[
a^2(b^2 - 2b) = a^2(4y^2 - 4y) = 2[a^2(2y^2 - 2y)],
 \]
 which again implies \(a^2(b^2 - 2b) \) is even. So, \(a^2(b^2 - 2b) \) is not odd.

 In either case, \(a^2(b^2 - 2b) \) is not odd. ■

7. Suppose \(a, b \in \mathbb{Z} \). If both \(ab \) and \(a + b \) are even, then both \(a \) and \(b \) are even.

 Proof: (by contrapositive)

 Suppose it is not the case that \(a \) and \(b \) are even.

 Then, either \(a \) is odd or \(b \) is odd.

 Case (a): If \(a \) is odd, then \(ab \) has the parity of \(b \) and \(a + b \) has parity opposite from \(b \). So, \(ab \) and \(a + b \) have opposite parity.

 Case (b): If \(b \) is odd, then \(ab \) has the parity of \(a \) and \(a + b \) has parity opposite from \(a \). So, \(ab \) and \(a + b \) have opposite parity.

 In either case, \(ab \) and \(a + b \) cannot both be even. ■

11. Suppose \(x, y \in \mathbb{Z} \). If \(x^2(y + 3) \) is even, then \(x \) is even or \(y \) is odd.

 Proof: (by contrapositive)

 Suppose it is not the case that \(x \) is even or \(y \) is odd.

 Then, \(x \) is odd and \(y \) is even.

 \[
x = 2a + 1 \quad \text{and} \quad y = 2b, \text{ for some} \quad a, b \in \mathbb{Z}, \text{ and}
 \]
 \[
x^2(y + 3) = (2a + 1)^2(2b + 3) = 2b(2a + 1)^2 + 2(2a + 1)^2 + (2a + 1)^2 = 2(2a + 1)^2(b + 1) + 4a^2 + 4a + 1
 \]
 \[
 = 2[(2a + 1)^2(b + 2) + 2a^2 + 2a] + 1,
 \]
 which is odd. ■

13. Suppose \(x \in \mathbb{R} \). If \(x^5 + 7x^3 + 5x \geq x^4 + x^2 + 8, \) then \(x \geq 0 \).

 Proof: (by contrapositive)

 Suppose it is not the case that \(x \geq 0 \).

 Then \(x < 0 \), all odd powers of \(x \) are less than zero, and all even powers of \(x \) are greater than zero.

 The left-hand-side of \(x^5 + 7x^3 + 5x \geq x^4 + x^2 + 8 \) is then less than zero, and the right-hand-side is greater than zero.

 That is, \(x^5 + 7x^3 + 5x < x^4 + x^2 + 8 \). ■
17. If \(n \) is odd, then \(8 | (n^2 - 1) \).
 Proof: (direct)
 Suppose \(n \) is odd.
 Then, for some integer \(x \), \(n = 2x + 1 \).
 \[
 n^2 - 1 = 4x^2 + 4x + 1 - 1 = 4(x^2 + x) = 4 \cdot 2y = 8y
 \]
since \(x^2 + x \) is always even. So, \(8 | (n^2 - 1) \).

19. Let \(a, b \in \mathbb{Z} \) and \(n \in \mathbb{N} \). If \(a \equiv b \mod n \) and \(a \equiv c \mod n \), then \(c \equiv b \mod n \).
 Proof: (direct)
 \[a \equiv b \mod n\] and \[a \equiv c \mod n\] imply
 \[
 n \mid (a - b)
 \]
 \[
 n \mid (a - c)
 \]
 \[
 a - b = xn
 \]
 \[
 a - c = yn
 \]
 \[
 (a - b) - (a - c) = xn - yn = (x - y)n
 \]
 \[
 c - b = (x - y)n,
 \]
 which implies \(c \equiv b \).

23. Let \(a, b, c \in \mathbb{Z} \) and \(n \in \mathbb{N} \). If \(a \equiv b \mod n \), then \(ca \equiv cb \mod n \).
 Proof: (direct)
 \(a \equiv b \mod n \) implies
 \[
 a - b = xn
 \]
 \[
 ca - cb = c(xn),
 \]
 which implies \(ca \equiv cb \mod n \).

27. If \(a \equiv 0 \mod 4 \) or \(a \equiv 1 \mod 4 \), then \(\binom{a}{2} \) is even.
 Proof: (direct)
 If \(a \equiv 0 \mod 4 \),
 \[
 \binom{a}{2} = \frac{a(a - 1)}{2} = \frac{4x(4x - 1)}{2} = 2x(4x - 1), \text{ which is even.}
 \]
 If \(a \equiv 1 \mod 4 \),
 \[
 a - 1 = 4x
 \]
 \[
 a = 4x + 1
 \]
 \[
 \binom{a}{2} = \frac{a(a - 1)}{2} = \frac{(4x + 1)4x}{2} = 2x(4x + 1), \text{ which is also even.}
 \]

31. Suppose the division algorithm, applied to \(a \) and \(b \), yields \(a = qb + r \). Then \(\gcd(a, b) = \gcd(r, b) \).
 Proof: (direct) Let \(d = \gcd(a, b) \).
 Then \(d \mid b \) and \(d \mid a \).
 Since \(r = a - qb \), we have \(d \mid r \). So, \(d \) divides both \(b \) and \(r \) and is therefore a competitor for \(\gcd(r, b) \). That is, \(\gcd(r, b) \geq \gcd(a, b) \).
 Now let \(d' = \gcd(r, b) \). Then \(d' \mid r \) and \(d' \mid b \).
 Since \(a = qb + r \), it follows that \(d' \mid a \). So \(d' \) divides both \(a \) and \(b \) and is therefore a competitor for \(\gcd(a, b) \). That is, \(\gcd(a, b) \geq \gcd(r, b) \).
 Combining the inequalities, we have \(\gcd(a, b) = \gcd(r, b) \).