p. 98

3. If \(a \) is an odd integer, then \(a^2 + 3a + 5 \) is odd.
 Proof: Let \(a \) be an odd integer.
 \[
 a = 2x + 1, \text{ for some integer } x
 \]
 \[
 a^2 + 3a + 5 = (2x + 1)^2 + 3(2x + 1) + 5 = 4x^2 + 4x + 1 + 6x + 3 + 5 = 4x^2 + 10x + 9 = 2(2x^2 + 5x + 4) + 1
 \]
 \[
 a^2 + 3a + 5 = 2b + 1, \text{ for } b = 2x^2 + 4x + 4.
 \]

 \(a^2 + 3a + 5 \) is odd. \(\blacksquare \)

5. Suppose \(x, y \in \mathbb{Z} \). If \(x \) is even, then \(xy \) is even.
 Proof: Let \(x, y \in \mathbb{Z} \) with \(x \) even.
 \[
 x = 2z, \text{ for some integer } z
 \]
 \[
 xy = (2z)y = 2(zy).
 \]

 Therefore \(xy \) is even. \(\blacksquare \)

9. Suppose \(a \) is an integer. If \(7 | (4a) \), then \(7 | a \).
 Proof. Let \(a \) be an integer such that \(7 | (4a) \).
 Then, there exists integer \(b \) such that \(4a = 7b \).
 The left side \(4a \) is even. Therefore the right side \(7b \) is even.
 Since the product of two odd integers is odd, \(b \) must be even.
 There exists integer \(c \) such that \(b = 2c \), which gives \(4a = 7b = 14c \), or equivalently \(2a = 7c \).
 Again, the left side \(2a \) is even, so \(7c \) must be even.
 But, the product of two odds is odd, so \(c \) is even.
 So, there exists integer \(d \) such that \(c = 2d \).
 That \(2a = 7c = 7(2d) = 14d \) or \(a = 7d \).
 Therefore \(7 | a \). \(\blacksquare \)

13. Suppose \(x, y \in \mathbb{R} \). If \(x^2 + 5y = y^2 + 5x \), then either \(x = y \) or \(x + y = 5 \).
 Proof: Let \(x, y \in \mathbb{R} \) such that \(x^2 + 5y = y^2 + 5x \).
 Case(a) \(x = y \).
 In this case, we have \((x = y) \lor (x + y = 5)\) is true.
 Case (b) \(x \neq y \). Then, we manipulate the equation as follows.
 \[
 x^2 + 5y = y^2 + 5x
 \]
 \[
 x^2 - y^2 = 5(x - y)
 \]
 \[
 (x + y)(x - y) = 5(x - y)
 \]
 \[
 x + y = 5,
 \]
 the division by \(x - y \) being justified by \(x - y \neq 0 \) since in this case, \(x \neq y \).
 Consequently, we again have \((x = y) \lor (x + y = 5)\) is true. \(\blacksquare \)
15. If \(n \in \mathbb{Z} \), then \(n^2 + 3n + 4 \) is even.

 Proof. Case 1: \(n \) is even. That is, \(n = 2a \) for some integer \(a \).
 \[
 n^2 + 3n + 4 = 4a^2 + 6a + 4 = 2(2a^2 + 3a + 2),
 \]
 which implies \(n^2 + 3n + 4 \) is even.

 Case 2: \(n \) is odd. That is, \(n = 2a + 1 \) for some integer \(a \).
 \[
 n^2 + 3n + 4 = (2a + 1)^2 + 3(2a + 1) + 4 = 4a^2 + 4a + 1 + 6a + 3 + 4 = 4a^2 + 8a + 8 = 2(2a^2 + 4a + 4),
 \]
 which implies \(n^2 + 3n + 4 \) is even. □

19. Suppose \(a, b, c \) are integers. If \(a^2 \mid b \) and \(b^3 \mid c \), then \(a^6 \mid c \).

 Proof: There exist integers \(x, y \) such that \(a^2 x = b \) and \(b^3 y = c \). Then,
 \[
 b^3 = (a^2 x)^3 = a^6 x^3,
 \]
 \[
 c = b^3 y = a^6 x^3 y,
 \]
 which implies \(a^6 \mid c \). □

23. If \(n \in \mathbb{N} \), then \(\binom{2n}{n} \) is even.

 Proof: By the binomial theorem,
 \[
 \sum_{k=0}^{2n} \binom{2n}{k} = \sum_{k=0}^{2n} \binom{2n}{k} 1^k \cdot 1^{2n-k} = (1 + 1)^{2n} = 2^{2n}.
 \]
 Also,
 \[
 \binom{2n}{0} = \binom{2n}{2n},
 \]
 \[
 \binom{2n}{1} = \binom{2n}{2n-1},
 \]
 \[
 \binom{2n}{2} = \binom{2n}{2n-2},
 \]
 \[
 \vdots = \vdots
 \]
 \[
 \binom{2n}{n-1} = \binom{2n}{n+1}
 \]
 So,
 \[
 2^{2n} = \binom{2n}{n} + 2 \sum_{k=0}^{n-1} \binom{2n}{k}
 \]
 \[
 \binom{2n}{n} = 2^{2n} - 2 \sum_{k=0}^{n-1} \binom{2n}{k} = 2 \left[2^{2n-1} - \sum_{k=0}^{n-1} \binom{2n}{k} \right],
 \]
 which implies \(\binom{2n}{n} \) is even. □

27. Suppose \(a, b \in \mathbb{N} \). If \(\gcd(a, b) > 1 \), then \(b \mid a \) or \(b \) is not prime.

 Proof. Suppose \(\gcd(a, b) > 1 \). We consider two cases.

 Case 1: \(b \) is not prime. In this case, we are finished, since the conclusion \((b \mid a) \lor (b \text{ is not prime}) \) is true.

 Case 2: \(b \) is prime. In this case, the only divisors of \(b \) are 1 and \(b \). Since the hypothesis excludes 1, we have \(\gcd(a, b) = b \). That is, \(b \mid a \), since the gcd must divide both of its arguments. □