3. How many lists of length 3 can be made from the symbols A, B, C, D, E, F, if . . .

(a) repetition is allowed: \(6^3 = 216\).
(b) repetition is not allowed: \(6 \cdot 5 \cdot 4 = 120\).
(c) repetition is not allowed and the list must contain A: \(3 \cdot 5 \cdot 4 = 60\). Place the A in one of the three positions, then choose from the remaining 5 letters for the other positions.
(d) repetition is allowed and the list must contain A:
\[
\binom{3}{1} \cdot 5^2 + \binom{3}{2} \cdot 5 + \binom{3}{3} = 3(25) + 3(5) + 1 = 91.
\]
List must contain 1 A or 2 A’s or 3 A’s.

7. Considering 8-bit strings, such as 01101100 . . .

(a) How many such strings are there? \(2^8 = 256\).
(b) How many strings end with zero? \(2^7 = 128\).
(c) How many strings have one in positions 2 and 4? \(2^6 = 64\).
(d) How many strings have one in position 2 or 4? \(2^7 + 2^7 - 2^6 = 256 - 64 = 192\) by Inclusion-Exclusion.

9. Considering four-letter codes from A, B, . . ., Z:

(a) How many strings? \(26^4 = 456976\)
(b) How many strings with no two consecutive entries the same? \(26 \cdot 25 \cdot 25 \cdot 25 = 406250\).

5. Using only pencil and paper, find \(120!/118!\).
\[
\frac{120!}{118!} = \frac{120 \cdot 119 \cdot 118!}{118!} = 120 \cdot 119 = (120)^2 - 120 = 14400 - 120 = 14280.
\]

7. Compute \(N\), the count of 9-digit numbers that can be made from 1, 2, . . ., 9 if repetition is not allowed and all the odd digits occur followed by all the even digits.

No repetition with 9-digit numbers means all of the digits must be used. There are five odds and four evens. So
\[
N = (5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)(4 \cdot 3 \cdot 2 \cdot 1) = 5! \cdot 4! = 120(24) = 1440(2) = 2880.
\]

5. How many 16-bit binary strings contain exactly seven ones?

\[
\binom{16}{7} = \frac{16!}{7! \cdot 9!} = \frac{16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} = \frac{16 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10}{7 \cdot 6 \cdot 4 \cdot 2} = \frac{16 \cdot 13 \cdot 12 \cdot 11 \cdot 10}{6 \cdot 4} = 8 \cdot 13 \cdot 11 \cdot 10
\]
\[
= 880 \cdot 13 = 11440.
\]

7. \(|\{X \in P(\{0,1,\ldots,9\}) : |X| < 4\}| = ?
\[
|\{X \in P(\{0,1,\ldots,9\}) : |X| < 4\}| = \sum_{j=0}^{3} \binom{10}{j} = 1 + 10 + \frac{10 \cdot 9}{2} + \frac{10 \cdot 9 \cdot 8}{2 \cdot 3} = 56 + 120 = 176.
\]
9. Consider strings of length 6 made from letters A, B, C, D, E, F with no repetition. How many such strings have the D occurring before the A.
 Choose positions for the A and D in \(\binom{6}{2} = 15 \) ways. Fill the remaining 4 positions in 4! = 24 ways. The total is 15 \cdot 24 = 360 ways.

11. How many positive 10-digit integers contain no zeros and exactly three sixes?
 \[
 \binom{10}{3} \cdot 8^7 = \frac{10 \cdot 9 \cdot 8}{2 \cdot 3} \cdot 8^7 = 120 \cdot 8^7 = 251658240.
 \]

p. 78

3. Use the binomial theorem to find the coefficient \(c_8 \) of \(x^8 \) in \((x + 2)^{13} \).
 \[
 c_8 = \binom{13}{8} \cdot 2^{13-8} = 32 \cdot \binom{13}{5} = 32 \cdot \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9}{2 \cdot 3 \cdot 4 \cdot 5} = 32 \cdot 13 \cdot 11 \cdot 9 = 41184.
 \]

5. Use the binomial theorem to prove \(\sum_{k=0}^{n} \binom{n}{k} = 2^n \).
 \[
 \sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} 1^{k} 1^{n-k} = (1 + 1)^n = 2^n.
 \]

7. Use the binomial theorem to prove \(\sum_{k=0}^{n} 3^k \binom{n}{k} = 4^n \).
 \[
 \sum_{k=0}^{n} 3^k \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} 3^{k} 1^{n-k} = (3 + 1)^n = 4^n.
 \]

9. Use the binomial theorem to show \(S = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \ldots + (-1)^n \binom{n}{n} = 0 \).
 \[
 S = \sum_{j=0}^{n} \binom{n}{j} (-1)^j = \sum_{j=0}^{n} \binom{n}{j} (-1)^j (1)^{n-j} = [1 + (-1)]^n = 0^n = 0.
 \]

p. 81

1. 523 students are history majors, math majors, or both. 100 students are math majors. 33 students are double majors: math and history. How many students are history majors?
 Let \(A \) be the set of history majors; let \(B \) be the set of math majors. We have \(|A \cup B| = 523 \), \(|B| = 100 \), and \(|A \cap B| = 33 \).
 By inclusion-exclusion, we have \(|A \cup B| = |A| + |B| - |A \cap B| \).
 Consequently, 523 = \(|A| + 100 - 33 \), or \(|A| = 523 - 67 = 456 \).

3. How many 4-digit positive integers are either even or contain no zeros. We assume 4-digit constructions beginning with one or more zeros are not 4-digit integers.
 Let \(A \) be the evens; let \(B \) be those containing no zeros. We want \(|A \cup B| \).
 Since an integer is even if and only if its last digit is even, we have \(|A| = 9 \cdot 10 \cdot 10 \cdot 5 = 4500 \), since there are 5 even digits
 Also, \(|B| = 9^4 = 6561 \), and \(|A \cap B| = 9 \cdot 9 \cdot 9 \cdot 4 = 2916 \), since there are 4 even nonzero digits.
 So, \(|A \cup B| = 4500 + 6561 - 2916 = 8145 \).

7. Using a standard 52-card deck, how many 4-card sets have either (a) all four cards in the same suit or (b) all four cards are red?
 Let \(A \) be the 4-card sets with all four in the same suit. Let \(B \) be the 4-card sets in which all are red. We construct an element of \(A \) by first choosing the suit and then four cards from that suit.
 \[
 |A| = \binom{4}{1} \cdot \binom{13}{4} = 4 \cdot \frac{13 \cdot 12 \cdot 11 \cdot 10}{2 \cdot 3 \cdot 4} = 26 \cdot 110 = 2860
 \]
 \[
 |B| = \binom{26}{4} = \frac{26 \cdot 25 \cdot 24 \cdot 23}{4 \cdot 3 \cdot 2} = 26 \cdot 25 \cdot 23 = 14950,
 \]
the last because there are 26 red cards in the deck. For \(A \cap B \), we first choose one of the two red suits and then four cards from that suit:

\[
|A \cap B| = \binom{2}{1} \cdot \binom{13}{4} = 2 \cdot \frac{13 \cdot 12 \cdot 11 \cdot 10}{2 \cdot 3 \cdot 4} = 13 \cdot 11 \cdot 10 = 1430
\]

\[
|A \cup B| = |A| + |B| - |A \cap B| = 2860 + 14950 - 1430 = 16380,
\]

the last by inclusion-exclusion.

9. A 4-letter list is made from the letters L, I, S, T, E, D as follows: (a) repetition is allowed and (b) the first two letters are vowels or the list ends in D. How many lists?

Let \(A \) be the set of such lists, given that repetition is allowed and the first two letters are vowels. Let \(B \) be the set of such lists, given that repetition is allowed and the last letter is D. We want \(|A \cup B| \).

Since the choices include only two vowels, I and E, we have

\[
|A| = 2 \cdot 2 \cdot 6 \cdot 6 = 144
\]

\[
|B| = 6 \cdot 6 \cdot 6 \cdot 1 = 6^3 = 216,
\]

the latter since the final letter must be D for membership in B. Also, if conditions (a) and (b) are imposed,

\[
|A \cap B| = 2 \cdot 2 \cdot 6 \cdot 1 = 24
\]

\[
|A \cup B| = |A| + |B| - |A \cap B| = 144 + 216 - 24 = 336.
\]