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ABSTRACT
Cavities in proteins facilitate a variety of biochemical processes.
�e shapes and sizes of cavities are factors that contribute to speci-
�city in ligand binding, and docking with other biomolecules. A
deep understanding of cavity properties may enable new insights
into protein-protein interactions, ligand binding, and structure-
based drug design studies. In this work we explore how biological
properties such as size and residue membership of protein cavities
correlate with the �exibility of the cavity as computed using an
e�cient graph theoretic rigidity algorithm. We hypothesize that
various rigidity properties of protein cavities are dependent
on cavity surface area. In this work we enumerate a set of cavity
rigidity metrics, and demonstrate their use in characterizing over
120,000 cavities from approximately 2,500 chains. We show that
cavity size indeed does correlate with some – but not all – cavity
rigidity metrics.

CCS CONCEPTS
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1 INTRODUCTION
Many biological functions performed by proteins are known to
be dependent on the size, structure, and placement of a protein’s
cavities. For example, ligand binding sites are strongly correlated
with the largest and deepest cavity in a protein, and the speci�c
geometry of a cavity has relevance for ligand design studies[18].
Figure 1 shows a few cavities for typical chains. �e size and
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geometry of cavities has proven useful in making predictions about
protein-protein interactions and protein druggability [10, 16]. Such
inferences depend on a large body of training data relating to cavity
properties. Where the space of such properties can be expanded to
re�ect new biophysical characteristics like molecular rigidity, the
capability of all inference building algorithms can be enhanced.

Our speci�c goal is to describe a qualitative and quantitative
survey of the rigidity properties of a large set of protein cavities.
We leverage the speed of rigidity analysis [12], which builds a
mechanical model of a protein from which an associated graph
containing nodes, hinges, and bars is constructed. �is enables us
to calculate structural information about cavities for a large set of
proteins in a reasonable amount of time, which we then analyze to
infer whether or not over-arching trends are discernible. �e rigid-
ity analysis approach that we have chosen is di�erent from other
approaches, which either require time and labor intensive work
on physical proteins, or else require computationally expensive
energetics calculations.

We de�ne several metrics of interest: cavity surface area, residues
in cavities, rigid clusters in cavities, and the total number of atoms
which are members of rigid clusters that are part of a cavity. New
tools for exploring these metrics may provide insights on how
cavities are a�ected by mutations, and how cavities facilitate drug-
ligand binding, and protein-protein interactions. In the long term,
understanding the relationship between protein cavities and rigidity

(a) lysozyme, 2lzm (b) HIV-1 protease, 1hhp

Figure 1: A cavity can be in a deep cle� of a protein (a), or
can be near a biomolecule’s surface (b). Identi�ed cavities
are shown purple. Secondary structures are red and yellow
(α helix and β sheets). Rendered in PyMol.



analysis can lead to new approaches for in silico experiments useful
for making predictions about protein function and how it is a�ected
by such variables as residue mutations, drug/ligand binding, or
environmental factors. By performing this large scale assessment
we begin to understand generalized relationships and create a basis
for more complex, detailed computations and biological insights.

2 RELATED WORK
In vitro studies investigating the roles of protein cavities have been
conducted on a variety of biomolecules. �e scope and breadth of
such studies highlights the importance of that work. Experiments
elucidating the roles of cavities have been conducted in vitro on a
variety of physical proteins.

For example, Musah et al. have studied the binding thermo-
dynamics of cytochrome c [19]. �ey report on the binding of a
small molecule to mutant structures, and reveal that cavities exhibit
strong speci�city for heterocyclic cations. Among 18 X-ray resolved
structures with bound molecules, they showed that cavities induced
by the mutations were able to exclusively bind speci�c molecules.
�is shows that changes to a cavity’s con�guration can drastically
a�ect the binding properties of molecules.

In other work, Bade et al, have studied cytotoxic T lympho-
cytes and peptide-human leukocyte antigen complexes [1]. �ey
explored the role of a single amino acid substitution, and identi-
�ed six pockets which play a speci�city role in restricting antigen
binding. �ey showed that antigen polymorphism a�ects which
cavities the antigen is compatible with.

In other research highlighting the important role of cavities,
synthetic C peptides were engineered to study drug targets of the
HIV-1 gp4 envelope protein [4]. Crystal structures of the core of
gp41 were resolved, and showed that 3 C helices pack against a
central coiled coil when the protein is in its function-activation
conformation. �e helices make strong contacts with hydrophobic
cavities on the surface of the coiled coil.

Binda, et al., studied monoamine oxidase B (MAO B), which due
to its role in a variety in neurological disorders, is a common target
for antidepressants and neuroprotective drugs [3]. Several beta
helices and coils at various positions of the oxidase were identi�ed
to play key roles in the protein’s binding a�nity with substrates.
�e active site was identi�ed as a 420 Å2 hydrophobic cavity inter-
connected with a second cavity of almost the same size. �is has
yielded understanding of the catalytic mechanism of the oxidase,
and drug design studies consider the induced �t of ligand-enzyme
interactions [2].

In yet other work, Ellio� et al. studied the serpin family of serine
proteinase inhibitors to improve understanding of their roles in
the in�ammatory, coagulation, and �brinolytic cascades [7]. �ey
identi�ed �ve cavities as potential drug targets which were hy-
pothesized to be associated with conformational changes of the
proteinase inhibitor family of molecules. �e ability of the serine
proteinase inhibitors to undergo structural rearrangements enables
them to perform their functions, which causes a host of adverse
medical conditions such as cirrhosis, thrombosis, and angioedema.
Knowledge of the cavities involved has enabled the rational design
of drug agents to prevent conformational transitions and pharmo-
cologically control the debilitating diseases they cause.

Computational approaches have also been developed, which aim
to identify protein cavities to enable predicting drug binding sites.
Such tools o�en leverage insights from machine learning. SCREEN
utilizes a Random Forest approach to identify druggable cavities,
analyzing surface cavities of nonreduntant proteins crystallized
with drugs [20]. MetaPocket 2.0 is a popular web services that
predicts drug binding sites with approximately 75% accuracy [22].
Fpocket detects and identi�es ligand binding pockets through use
of alpha spheres and Voronoi tessellation [9].

�ese studies show how knowledge of protein cavities has far
reaching implications across a variety of research e�orts. Due to
the labor intensive work needed to conduct studies in physical
proteins, research e�orts most o�en focus on a single protein or a
class of proteins. �us, knowledge gained about the characteristics
and roles of speci�c cavities applies only to the biomolecules being
investigated. A few large scale studies have been conducted, in
which the properties of protein cavities have been categorized by
their function in relation to their size [16, 18]. �ere is a close
relationship between the size of cavities and the active site of pro-
teins, with a majority of proteins binding ligands at their largest
cavity [16]. Additionally, the number of cavities correlates with the
size of the protein. However, even though the largest cavity is the
binding site in most cases, certain methods of measuring cavities
have revealed there is no correlation between the size of the protein
and the size of the active site.

3 METHODS
Our computational pipeline includes several steps (Figure 2). For
each protein in our data set of PDB structures, we identify the
residues in the cavities on the molecule’s surface and calculate the
rigidity properties of each protein. We generate a data set which
aggregates structural information from a PDB �le, the information
output by the cavity detection program, and the rigidity analysis.

We analyzed 2,497 non-redundant chains from a randomly se-
lected group of PDBs, all of which were resolved using X-ray crys-
tallography. From these structures we used a cavity detection radius
of 1 solvent Radii, and eliminated all cavities smaller than 1Å2. We
were le� with a list of 123,872 cavities.

Figure 2: Computation pipeline. We identify cavities among
protein chains in PDBs. We use an e�cient rigidity analy-
sis approach to identify rigid clusters of atoms in a protein.
�e structure (pdb), rigidity (cluster), and cavity (surf) �les
are aggregated to generate details of the rigidity properties
of the cavities. From the aggregate metrics we plot various
cavity-rigidity-atom properties.



3.0.1 Identifying Cavities. �e so�ware VASP-E [5] was used to
identify cavities and to calculate their surface areas. �e surface
area is the sum of the areas of all triangles de�ned to be on the sur-
face based on the molecular surface area [6]. Molecular surfaces are
de�ned as C1-smooth surfaces that surround the atoms of a protein.
It is generated conceptually by rolling a ball around the surface,
and de�ned by the region of space that ball cannot occupy. [17]
�e residues that participate in each cavity were also identi�ed as
the set of amino acids closest to the cavity surface. Speci�cally, the
surface is de�ned as a mesh of triangles and every triangle has an
atom of the structure closest to it. �at atom is part of some amino
acid, which is added to a list. Consider the following output of the
cavity calculation program:

Pocket 0 (area: 23.60): (2,4,5,7,12,45,46,47)
Pocket 1 (area: 12.34): (11,13,15,16,17)
Pocket 2 (area: 6.04): (18,19,20)

�ree pockets are identi�ed, with IDs 0, 1 and 2, with cavity surface
areas of 23.60, 12.34, and 6.04 Å2. �e largest pocket (ID 0) has
participating residues 2, 4, 5, 7, 12, 45, 46, and 47, the second largest
pocket has participating residues 11, 13, 15, 16, and 17, and so forth.
From among the proteins that we studied, the largest cavity was
6,257 Å2. We did not include any cavities with surface area less
than 1 Å2 because this represents the geometry of an amino acid.

3.0.2 Rigidity Analysis. Rigidity analysis [13, 14, 21] is a fast
graph-based method that provides information about the �exibility
of proteins, which are known to contain regions of varying degrees
of rigidity [15]. In rigidity analysis, atoms and their chemical inter-
actions are used to construct a mechanical model of a molecule. A

(a) Atoms and bonds (b) rigid bodies

(c) model (d) analysis (e) rigid clusters

Figure 3: Rigidity Analysis: atoms from a PDB �le and bonds
among them (a) are analyzed to determine rigid bodies (b),
the smallest rigidity components in a molecule. A mechani-
cal model (c) representing the degrees of freedom among the
rigid bodies is converted to an associated graph (d) on which
rigidity analysis is performed. Its output is used to identify
rigid clusters of atoms in the protein (e).
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Figure 4: Structure Based Metrics. �e properties of protein
cavities that we are exploring are the surface area (a), the
number of residues participating in the cavity (b, which has
six residues) and the number of rigid clusters participating
in the cavity (c, which has four rigid clusters).

graph is constructed from the model in which each body is asso-
ciated to a node, a hinge between two bodies to �ve edges, and a
bar is associated to an edge. Pebble game algorithms [11] are used
to analyze the rigidity of the graph. �e results are used to infer
the rigid and �exible regions of the protein. See Figure 3 for an
overview of rigidity analysis.

We use the freely available KINARI rigidity so�ware [8] to cal-
culate the rigidity properties of each protein in our data set. �e
rigidity analysis output is an XML �le containing the identi�ed
rigid clusters of atoms. �e following is a sample output of the
rigidity analysis of a protein; it identi�es atoms 2 and 3 (the IDs
from the PDB �le) as being members of the rigid body with ID 0.

<body id="0">
<pointSet>
<point id="2"/>
<point id="3"/>
</pointSet>
</body>

3.0.3 Aggregation of Data. Rigidity data �les contain informa-
tion about atom IDs and clusters; PDB �les contain information
about residue IDs and atom IDs; and cavity data �les contain infor-
mation about residue IDs and rigid clusters. None of these �les indi-
vidually contain comprehensive information about rigidity proper-
ties and residue properties of the protein. In order to associate the
rigid clusters with the cavities, the residue identities from the cavity
surfaces are cross referenced with a PDB �le to identify the alpha
carbon associated with that residue. �e atom IDs of a rigid cluster
are scanned, and if the alpha carbon exists in that rigid cluster it is
associated with the cavity.

�e output of our aggregation step is a tabular summative record
of all cavities at least 1Å2 in size. A sample output below, lists from
le�-to-right the protein ID, chain ID, cavity ID, cavity surface area,
count of residues, count of rigid clusters, and total atoms in those
rigid clusters.

1e9w A 0 23.6024493 16 6 63
1e9w A 1 17.0409083 17 3 45
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Figure 5: Rigidity Based Metrics. �e rigid cluster metrics
we tally include the count of residues in a rigid cluster (a,
count of 3), the count of atoms in a rigid cluster (b, count
of 7), and the count of atoms among the residues that have
membership in a rigid cluster, irrespective if the atoms are
themselves part of the rigid cluster or not (c, count of 16).

4 CAVITY / RIGIDITY METRICS
�e aggregate data, along with the rigidity, cavity, and PDB data,
permit us to de�ne a number of metrics for exploring the rigidity
properties of the proteins in our data set. �e cavity-rigidity metrics
that we explore are the following:

• Cr esCount : number of residues in a cavity
• Cr iдidClustCount : number of rigid clusters in a cavity
• CclusterAtomCount : count of atoms in the rigid clusters

that have membership in a cavity

We are particularly interested in exploring how the surface area of
a cavity correlates with other metrics, including the cavity-rigidity
metrics, because the size of a cavity is known to determine struc-
tural and functional properties of a protein [10, 16]. Because rigidity
analysis is quick, identifying relationships between cavities and
their rigidity properties has the potential to complement existing
studies at a fraction of the computation time, and without the need
for laborious wet lab work. Ultimately we aim to quantify the
cavity-rigidity relationships to improve cavity analysis so�ware
and research. We identify two broad types of metrics: those that
are structure based, and those that are rigidity based. We describe
both in the following two subsections.

4.0.1 Structure Based Metrics. Several properties of cavities we
are exploring are from a biological context, and are taken directly
from existing PDB data. �ese include surface area of protein
cavities having size greater than 1 Å2 (Figure 4a), and the number
of residues that participate in a cavity (Figure 4b).

4.0.2 Rigidity Based Metrics. We identify three rigidity metrics
of cavities. We tally the count of residues in a rigid cluster (Fig-
ure 5a), the count of atoms in a rigid cluster (Figure 5b), and the
count of atoms among all of the residues participating in a rigid
cluster, irrespective if the atoms themselves are members of the
rigid cluster or not (Figure 5c). �e implications of these particular
properties of cavities are still largely unexplored, and these metrics
are the foundation that will permit us in future work to quantify
how properties of atoms in rigid clusters relate to cavity size.

5 RESULTS
Following through with our motivation to explore the rigidity prop-
erties of protein cavities, we enumerated the relationship among
several of the metrics in Section 4. For each pair of metric correla-
tions we explored, we generated a plot. We discuss these here.

5.0.1 Residue count versus cavity surface area. As a validation
step, we plo�ed the surface area of cavities versus the number of
residues in those cavities (Figure 6). Although the 20 naturally
occurring amino acids are composed of di�erent numbers of atoms
and are therefore di�erent sizes, on average a cavity composed
of more residues is expected to be larger than one composed of
fewer residues. A linear relationship (correlation coe�cient: 0.975)
for cavity size versus the number of residues in a cavity follows
this logic. Subsequent graphs containing these metrics have very
similar overall shapes a�ributable to this linear relationship.

5.0.2 Rigid cluster count versus cavity surface area and residue
count. �e correlation coe�cient between the rigid cluster count
of a cavity and the size of the cavity (Figure 7) was 0.761. �e plot
suggests that a small number of rigid clusters will not dom-
inate a large cavity. �ere are only a few isolated cases where a
large cavity surface area contains a low count of rigid clusters, and
these cases are isolated from the behavior of the majority of the
cavities plo�ed.

We observed that for a particular cavity surface area, the
counts of rigid clusters that have membership in that cav-
ity fall predominantly within a lower and upper limit. For
example, in the upper plot in Figure 7, cavity surface areas of ap-
proximately 1,000Å2 are composed of between 30 and 150 rigid
clusters, but most of the rigid clusters are between 30 and 100 atoms.
Similarly, for cavities greater than 1,000Å2, there are no cases where
1 or 2 rigid clusters only are members of those cavities. �ere are a
handful of outlier cases where a large cavity is made up of a small
count of rigid clusters (the line of outliers along the le� side of the
top and bo�om of Figure 7). A few examples of these proteins are

Figure 6: Validation of our Calculations, Residue Count vs
Cavity Surface Area. �e surface area of cavities has a lin-
ear relationship with the number of residues participating
in the cavity, with a correlation coe�cient of 0.975.



Rigid Clusters in Cavity

Figure 7: Rigid Cluster Count vs Cavity Surface Area and
Residue Count. With the exception of a select number
of proteins containing unusual characteristics (the points
along the le� hand side of the graphs, specifying large cav-
ities dominated by single rigid clusters), the ranges of the
count of rigid clusters in a cavity falls within a distinct range,
which grows wider as cavities increase in size. �e correla-
tion coe�cients for cavity surface area and residue count
versus rigid cluster count are 0.761 and 0.769 respectively.

PDB structures 1rea, 1tgl, 1tia, and 1tic. Our preliminary investiga-
tion into these particular proteins reveals that they all have a large,
shallow concave surface, and that there is a single rigid cluster that
consumes the entire cavity.

5.0.3 Total Atoms in Rigid Clusters versus cavity surface area,
residue count, and rigid cluster count. For smaller cavities (less than
1,000Å2, or approximately 50 residues), there does not exist a dis-
cernible correlation between the total atoms in the rigid clusters
that are members of a cavity and the number of residues in the
cavity. �is can be seen in the dense placing of points at the bo�om
of the graphs for total atoms in rigid clusters versus cavity surface
area/residues/rigid clusters in the cavity (Figure 8), and in the low
correlation coe�cients of 0.128 for residue count and 0.109 for cav-
ity surface area. However, in cavities with sizes greater than
1,000Å2, it is more likely that those cavities contain smaller
rigid clusters. �is can be seen in each of the subplots in Figure 8,
where there are far more points to the le� of 4,000 for each Cavity
size than there are to the right of 4,000. �e relationship between
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Figure 8: Total Atoms in Rigid Clusters vs Rigid Clusters in
Cavity, Residues in Cavity, and Cavity Surface Area. While
there is no correlation between these metrics (having corel-
lation coe�cients of 0.109 for cavity surface area, 0.128 for
residues in cavity, and -0.103 for rigid clusters versus total
atoms in rigid clusters), there is a heavier distribution of
smaller rigid clusters (fewer total atoms) for cavities larger
than 1000Å2 or which have more than 50 residues. Under
this threshold there is an even spread of rigid cluster sizes.

rigid clusters and their atom counts likely a�ects some of the out-
comes of how rigid clusters are correlating with the size of the
cavity/residues in the cavity.

5.0.4 Rigid cluster count versus cavity surface area versus total
rigid atoms. A three dimensional graph (Figure 9) of our metrics
best shows how a relationship exists between the size of cavities,
the number of rigid clusters participating in those cavities, and the
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Figure 9: Rigid Cluster Count vs Cavity Surface Area vs Total
Atoms in Rigid Clusters. Larger surface areas coincide with
higher rigid cluster counts/more overall rigid atoms.

number of atoms contained in those rigid clusters. �ere are more
rigid clusters associated with bigger cavities, and these rigid clusters
grow larger as the cavity surface area increases. �is suggests that
larger rigid clusters are correlated with larger cavities. �ere are
strong limits on the range of how many rigid clusters exist in a
cavity of a given size, as well as a limit on the range of how large
those rigid clusters can be. �ere are some exceptions to these
ranges where there is low rigid cluster count to cavity surface area
ratio.

6 CONCLUSION
A large scale assessment of the rigidity properties of protein cavities
is our ultimate goal. We have enumerated a series of cavity rigidity
metrics and demonstrated their use in exploring a small subset of
available PDB data. Of the correlations among the rigidity and
cavity metrics that we explored, we were able to identify several
interesting relationships. As expected, the number of rigid clusters
has a positive correlation with cavity size (Figure 7). Additionally
we observed that for small cavities, no correlation exists between
the size of rigid clusters and the size of the cavity; cavities smaller
than approximately 1,000Å2 were composed of both small and large
rigid clusters from among the proteins that we studied. However, for
larger cavities, we observed that they are composed predominantly
of rigid clusters composed of residues with less than 4,000 total
atoms (Figure 8). Our initial hypothesis that rigidity properties of
cavities vary with cavity surface area is true.

For future work, we will explore the correlations that exist among
cavity size and other rigidity and biological properties. For example,
how counts of the di�erent types of amino acids that are partic-
ipating in rigid clusters of a cavity correlate with surface area.
Additionally we will investigate how secondary and tertiary struc-
tures of protein cavities interact with rigidity metrics. Many of our
outliers, on cursory inspection, had similar features such as a large,
shallow cavities. Creating more selective data sets that contain

similar structures (for example, proteins with largest cavities over
a certain threshold, or classes of proteins such as transmembrane
proteins with beta-barrels or alpha helix domains) and looking in
close detail at their rigidity analysis/cavity data may lead to useful
insights that are not apparent in an overview study. �ere are also
statistical analyses that need to be performed on our existing data
to be�er quantify the relationships. Finally, we plan to analyze the
majority of the more than 120,000 protein structures in the PDB.
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