
ModEDI: An Extendable Software Architecture for
Examining the Effects of Developmental Interactions

on Evolutionary Trajectories

Elizabeth Brooks
Department of Computer Science
Western Washington University

Bellingham, WA 98225
Email: brookse5@wwu.edu

Graham Roberts
Department of Computer Science
Western Washington University

Bellingham, WA 98225
Email: robertg4@wwu.edu

Alison Scoville
Department of Biology

Central Washington University
Ellensburg, WA 98926

Email: scoville@cwu.edu

Filip Jagodzinski
Department of Computer Science
Western Washington University

Bellingham, WA 98225
Email: filip.jagodzinski@wwu.edu

Abstract—Quantitative genetics is the study of complex bi-
ological traits, or traits controlled by more than one gene. A
primary goal of quantitative genetic studies is the development
of computational models for predicting the evolution of such traits
in response to selection. Most models for analyzing the evolution
of multiple traits employ a constant genetic variance-covariance
matrix (G-matrix) to describe the distribution of genetic variation.
While G-matrix based models provide a reasonable approxima-
tion of short term evolution, they may not sufficiently capture
all important associations between traits. For example, non-
linear interactions between developmental factors underlying the
production of traits can result in dramatic alteration of genetic
variances and covariances as evolution proceeds. To aid in investi-
gating this issue, we have developed an object-oriented code base,
Models of Evolution with Developmental Interactions (ModEDI),
that implements a powerful, general mathematical and conceptual
framework developed by Sean Rice. This framework utilizes
a phenotypic landscape to explicitly incorporate the effect of
development in shaping heritable phenotypic variation. With our
program, users can develop custom simulations for analyzing
the evolution of multiple phenotypic traits that involve interac-
tions between overlapping sets of developmental factors. Initial
results from simulations performed with ModEDI indicate that
developmental interactions may substantially alter evolutionary
trajectories.

I. INTRODUCTION

The amount of heritable variation in a population deter-
mines its evolutionary response to selection. The statistical
construct of genetic variances and covariances (the G-matrix),
a central concept in quantitative genetics, is often used to sum-
marize the distribution of heritable variation among multiple
traits [1]–[3]. The geometry of the G-matrix quantifies genetic
constraints that can hinder, facilitate, or bias evolution towards
genetic lines of least resistance (the direction in which most
genetic variation exists) [4]. Shared developmental processes
represent a principal contributor to this geometry [5], and it
is generally assumed that the G-matrix adequately captures
aspects of developmental architecture that are relevant for
predicting evolutionary trajectories.

A major limitation of G-matrix based models is that
their predictive power depends upon the stability of the ma-
trix [1], [4], [6]. Non-additive developmental interactions
can dramatically alter genetic variances and covariances of
traits [7], [8], rendering approaches based on a constant G-

matrix questionable [9], [10]. A general mathematical and
conceptual framework derived by Sean Rice [2], [11]–[13]
explicitly incorporates the effect of non-additive developmen-
tal interactions on the evolution of traits. This framework
encompasses quantitative genetics as a special case but is
far more flexible, allowing for exploration of the effects of
different types of selection, under essentially any form of
genetic and developmental architecture.

We present a novel object-oriented software architec-
ture, Models of Evolution with Developmental Interactions
(ModEDI), that incorporates the mathematical framework de-
rived by Rice into an object-oriented design that is extendable
for custom simulations of user specified populations. Our
modular code base implements this framework as a re-usable
software bundle to produce both numerical and graphical
representations of evolutionary trajectories. As a case study,
we analyze evolutionary change in melanic pigmentation and
diel vertical migration (DVM) in Daphnia melanica, a species
of freshwater zooplankton, in response to introduced fish
predators. We compare evolutionary trajectories predicted by
a constant G-matrix approach, and a model that explicitly
recognizes the developmental entanglement between these two
traits. Results from our Daphnia case study show that incor-
porating developmental interaction can greatly affect predicted
evolutionary trajectories.

II. BACKGROUND

Quantitative genetic models recognize that two elements
are needed to predict the evolution of traits due to selection:
the strength and direction of selection, and the availability
of heritable genetic variation. The strength and direction of
selection is captured by the individual fitness surface, which
describes the expected reproductive success of an individual
as a function of its trait values. The fitness surface in Figure 1
depicts one plausible pattern of expected fitness of a Daphnia
melanica in the presence of fish predators, based on its melanic
pigmentation and tendency to move downward in the water
column during the day (DVM). Thus, there exists a value
of those two traits such that a maximum fitness is attained,
depicted by the peak (plus sign). The partial first derivatives of
this landscape represent the strength and direction of selection
on each phenotypic trait at any given point in trait space.
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Fig. 1. A fitness surface displays levels of high (+) and low (-) expected
reproductive success as a function of trait values. Contour lines indicate fitness
isoclines. Arrow heads indicate the mean trait values of a population as it
evolves according to a constant G-matrix model (open arrows) or a model
that incorporates developmental entanglement (closed arrows).

The G-matrix is commonly employed as the primary de-
scriptor of heritable variation and co-variation in a set of traits.
However, evolution of the G-matrix is poorly understood.
Long-term empirical evolution studies that examine stability
of the G-matrix are rare, and at least some show rapid and
unpredictable change over time [6]. Meanwhile, theoretical
studies show that stability of the G-matrix depends upon the
tendency for single mutations to have a predictable pattern
of pleiotropy, i.e., correlated effects on multiple traits [14].
Until recently, approaches to a general understanding of the
stability and evolution of the G-matrix have met with limited
success [1].

A key insight, that developmental processes structure the
geometry of the G-matrix, promises to transform our under-
standing of evolutionary patterns. The importance of develop-
ment in shaping phenotypic variation has been recognized for
some time [15], and inspired the emergence of evolutionary
developmental biology (evo-devo) [16]. The effect of devel-
opmental processes has more recently been made analytically

Fig. 2. A phenotypic landscape describing the degree of melanic pigmentation
as a function of two underlying developmental factors: average daytime depth
(DVM), which influences exposure to UVB radiation, and the degree to which
an individual alters melanin production when protected from UVB radiation
(sensitivity to UVB).

tractable by the concept of a phenotypic landscape, which is
constructed by plotting the value of a phenotype against the
values of the underlying genetic and environmental factors that
interact in its development [12]. For example, D. melanica, a
species of freshwater zooplankton, generally reacts to UV ex-
posure by increasing melanin production. However, individuals
can differ in UV exposure due to variation in their tendency
to take refuge from UV and predation in deep water during
the day (DVM). In addition, individuals vary in their ability
to respond to changes in UV by altering melanin production.
The interaction between these two traits is captured in the
phenotypic landscape in Figure 2, which shows the melanic
pigmentation in D. melanica as a function of average DVM
and sensitivity to UVB radiation.

In the mathematical framework derived by Rice [2], the
phenotypic landscape describes the distribution of heritable
variation at any point in developmental space. In effect, the G-
matrix serves as a local linear approximation of the phenotypic
landscape at the current population mean [17]. Any non-
additive interactions between developmental factors, such as
the case of DVM and melanin in D. melanica, results in
curvature of the landscape and concomitant change in the
G-matrix as the population evolves. This change cannot be
predicted from estimation of the initial G-matrix, but can be
understood as a function of the specific form of developmental
interaction underlying a set of traits [17].

Simulations of evolution using the framework developed
by Rice promise to aid in the study of phenotypic evolution,
multilevel selection, and social evolution for the fields of
evolutionary developmental biology, quantitative genetics, and
ecology [2], [17]. This framework combines quantitative ge-
netics and evo-devo to incorporate the effects of developmental
interactions on the evolution of phenotypes [13]. Thus, models
developed with this framework allow for testing hypotheses
about how developmental interactions among multiple traits
affect their covariances and subsequent evolutionary trajecto-
ries.

III. METHODS - MODELS FOR Daphnia

To demonstrate the utility of ModEDI, we have developed
a case study based on two traits in the species D. melanica.
The first model in this case study relies on a constant G-
matrix approach, while the second incorporates developmen-
tal interactions between the two traits. Our object oriented
code base implements the mathematical framework derived
by Rice [2] for predicting the evolution of phenotypic traits
that share at least some underlying developmental factors. Our
second model relies on a phenotypic landscape to specify trait
values as a function of underlying developmental factors [17].
Additionally, ModEDI is generalized to allow users to easily
develop custom models for studying the evolution of multiple
phenotypic traits.

The simulations produced by ModEDI may be used to
analyze the effect of selection on the means and (co)variances
of traits, allowing for comparison with constant G-matrix
models, as well as for investigation of the constancy of the
G-matrix itself. The initial parameter values specific to D.
melanica that were implemented in the custom models used
in our simulation experiments are shown in Table I. Values
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for UVB dose at the water surface and attenuation coefficient
were obtained from Sequoia National Park in the Sierra Nevada
Range [18]. Values specific to Daphnia were obtained from
empirical study ( [19], unpublished data). Starting trait values
match mean values from populations that have not been subject
to fish predation. Fitness optima were estimated from mean
trait values in populations that have been subject to selection by
human-introduced fish predators for approximately 100 years.
Variances of the fitness surface and heritability were chosen
to represent plausible values.

TABLE I. INITIAL VALUES OF SPECIES VARIABLES ENCODED IN OUR
MODELS FOR Daphnia

Symbol Parameter Value
m̄ Mean Melanin 2.5
d̄ Mean DVM 1.0
σm Phenotypic variance of Melanin 0.04
σd Phenotypic variance of DVM 0.2
ωm Optimum Melanin 0.4
ωd Optimum DVM 12
vm Variance of the Gaussian function relating Melanin to fitness 100
vd Variance of the Gaussian function relating DVM to fitness 500
K Attenuation Coefficient 0.26
u0 UVB dose at water surface 27.9
h2 Heritability matrix (diagonal values) 0.5

A. Mathematical Framework

We model the evolution of phenotypic traits due to se-
lection by specifying the strength and direction of selection,
as well as the availability of heritable genetic variation. The
individual fitness surface (1) describes the strength and di-
rection of selection for D. melanica, which is defined by the
sum of fitness values associated with the individual m and d
values of an individual. The fitness values for m and d are
each described by a Gaussian function with respective optima
at ωm and ωd and variances of vm and vd. The results of our
models are visualized by graphing the trajectory of the mean
bivariate phenotype, superimposed over the individual fitness
surface (Figures 4-8).

w =
1√
vm2π

e−
(m−ωm)2

2vm +
1√
vd2π

e
− (d−ωd)2

2vd (1)

In our Classic, G-matrix based model, evolution of melanin
and DVM over time is simulated based on constant genetic
covariance of these traits and the natural selection imposed by
the introduction of a novel fish predator, as specified by our
fitness function (1). Our Classic model predicts the evolution
of mean melanin (2) and mean DVM (3) from generation t to
generation t+ 1, starting at the initial values given in Table I.
At each point in time t, the partial derivatives of the individual
fitness surface are evaluated at m̄t and d̄t. Heritability is
defined by the diagonal values of the heritability matrix h2.

m̄t+1 = m̄t + h2 1

w̄

∂w

∂m
σm (2)

d̄t+1 = d̄t + h2 1

w̄

∂w

∂d
σd (3)

Mean population fitness for our models is calculated as the
product of individual fitness, w, and the joint distribution of
m and d, integrated over m and d. The joint distribution of
m and d is described by a bivariate Gaussian distribution with
means m̄ and d̄, variances σm and σd, and a covariance of 0.

Developmental entanglement arises in our second model,
Tanning, due to the fact that DVM influences exposure to
UVR, which decays exponentially with depth in the water,
and UVR affects production of melanin. This model predicts
the evolution of mean trait values both Analytically (4) and by
Simulation of individuals (5). For simplicity, we assume that
the relationship between UV exposure and melanin production
is linear. Melanin is calculated for each individual Daphnia as
m = z+pa, where z is the concentration of melanin produced
in response to exposure to UV light available at the top of the
water column, a is the change in UVB exposure compared
to the top of the water column, and p is the slope of the
reaction norm indicating sensitivity of melanin production to
UVB. Thus, the phenotypic function for melanin production
by an individual (4) is calculated by describing the change
in UVB exposure, a, as UVB decreases exponentially with
increased depth in the water column.

m = z + p
(
µ0e

−dk − µo
)

(4)

Mean melanin is calculated analytically (5) in our Tanning
model as the product of m and the joint distribution of z, p, and
d, integrated analytically over z and p and numerically over d.

m̄ = z̄ +
(
−1 + e

1
2k(−2d̄+kσd)

)
p̄µ0 (5)

Both mean melanin and DVM are determined in our Tan-
ning model by treating the underlying developmental factors, z
and p, as quantitative genetic traits, following the polynomial
approach to modeling the evolution of phenotypic plastic-
ity [20], [21]. Thus, change in trait values from generation t
to generation t+ 1 due to directional selection is given by (6)
when developmental entanglement is taken into account [2],
[12].

z̄p̄
d̄


t+1

=

z̄p̄
d̄


t

+H

 1

w̄

∂w

∂d

 0
0
σd

 +
1

w̄

∂w

∂m

 σz(
µ0e

−dk − µ0

)
σp

Kpµ0e
−dKσp


 (6)

B. Software Architecture

Object-oriented programming is centered around the
concept of modular objects, which represent items with
related states and behaviors. In our case study, the species D.
melanica is represented as an object with phenotypes as states
and phenotypic functions as behaviors. Using a well defined
class hierarchy, related states and behaviors are described
in connected bundles of software. The code architecture of
ModEDI, Figure 3, may be easily extended by developing
new derived classes that reuse already existing software
bundles of phenotypic states and functions.
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Fig. 3. A UML diagram of the ModEDI software architecture with two colored derived classes (Classic and Tanning). Interface classes are connected with
dashed lines, while derived classes with solid lines and filled diamonds. The multiple generalization relationship is designated with a hollow arrowhead.

For example, the Surface Distribution interface class pro-
vides a template for describing functions that generate random
values following Gaussian, sigmoid, and linear distributions.
These Distribution Selections are used by the Mean Fitness
class to create the Gaussian fitness surface for both models,
and the Mean Melanin class to create the melanin phenotype
surface. The derived ModEDI Simulations class is qualified
by the input Distribution Selection to each model, where up
to one evolutionary trajectory may be simulated for each set
of input model values.

Our models for Daphnia describe the evolution of mean
melanin and DVM over time by first referencing the initial
phenotypic states declared in the Species Characteristic inter-
face class. Each model projects the evolutionary trajectories
of mean melanin and DVM by iteratively updating states
and passing the updated values to intermediate functions and
classes. Finally, the calculated mean values for each model are
output by ModEDI Math to separate text files for parsing and
plotting upon simulation completion.

Underlying developmental factors are incorporated in our
Tanning model to project changes from one generation to the
next in the presence of directional selection. The dynamics de-
pend upon the partial derivatives of the phenotypic landscape.
Mean trait values for each generation are passed to phenotypic
functions that calculate new mean values as the phenotypic
states for the next generation. This iterative process is used to
predict the evolutionary response of both traits.

Both models are deterministic and can be approached an-
alytically. However, we also estimate mean population values
and derivatives of the phenotypic landscape for our Tanning
model via simulation, for comparison with the analytic results.
This serves as a proof of concept for use of simulation in cases
where the system of equations describing a set of traits is too
complex to be analytically tractable.

IV. RESULTS - A CASE STUDY

An extensive sweep was performed for each model to
determine the sensitivity to starting values for each parameter.
Starting at the initial values given in Table I, each parameter
was independently altered prior to running the program. The
results of our models are visualized by graphing the trajec-
tory of the mean bivariate phenotype, superimposed over the
contour plot of the individual fitness landscape.

Fig. 4. A focused parameter sweep of the phenotypic variance of DVM,
σd = 0.2±0.02. The value of σd is constant across rows (0.18, 0.20, and 0.22,
Top-to-Bottom), while the columns indicate modeling method (Classical G-
matrix, Tanning Analytical, and Tanning Simulated, Left-to-Right). The colors
among the contoured fitness surface specify high (red) and low (blue) expected
reproductive success.

The results of two focused parameter sweeps are shown
in Figure 4 and Figure 5. The first shows the effect of
changing the phenotypic variance of DVM around 10% of
the value quoted in Table I. Displayed are three runs on
each of the models, Classic, Analytic Tanning, and Simulated
Tanning. These experiments show similar results, suggesting
that trajectories are robust to uncertainties in the variance of
at least one developmental factor. The stochastic nature of
the simulated model does appear to decrease as the variance
decreases, which is to be expected.

The second sweep was performed about the initial value
for DVM of d = 1.0. There is a fairly dramatic change in the
early generations of the evolutionary trajectory for the Tanning
models, resulting in a pronounced curve as this initial value
is decreased. This suggests that the starting point of a popu-
lation can significantly affect its initial evolutionary trajectory,
although each of these curves converges to approximately the
same trajectory over later generations.
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Fig. 5. A focused parameter sweep of the initial value for DVM. The rows
show 10% changes in the value (0.9, 1.0, and 1.1, Top-to-Bottom), while the
columns are for each modeling method (Classical G-matrix, Tanning Analyt-
ical, and Tanning Simulated, Left-to-Right). The colors among the contoured
fitness surface specify high (red) and low (blue) expected reproductive success.

Our experiments show that incorporating non-additive in-
teractions between the two traits substantially influences evo-
lutionary trajectories. While both models approach the same
optimum values, the developmental entanglement incorporated
in the Tanning model shows increased genetic covariance in
the direction of selection. This results in a substantially faster
rate of adaption than displayed in the results of the Classic
model. In addition, DVM changes much more rapidly relative
to melanin in Tanning. As we see in Figure 6, even though both
parameters evolve toward their optimum values, the line in the
Classic model displays a direct path up the fitness landscape,
rather than the sharp “L” shape seen in the Tanning models.
In addition, parameter sweeps reveal that the Tanning model
displays greater responsiveness to minor changes in initial
values and phenotypic variances.

V. CONCLUSIONS - FUTURE WORK

The class structure of our ModEDI code base is conducive
to future extension and generalization. This will be particularly
important for allowing users to input custom functions de-
scribing trait relationships within a species, while maintaining
efficiency. For example, a surface distribution needs to be
generated and evaluated based on the user supplied functions
for every trait under consideration. By maintaining an object
oriented structure for our code base, the same functions may
be used to draw and sample from each distribution.

With our program, users will be able to develop custom
simulations for analyzing the evolution of multiple phenotypic
traits. We expect that these simulations will enable users to
efficiently test hypotheses regarding the consequences of non-
linear developmental interactions on the evolution of specific
traits of a species.

A. User Interface

A streamlined web interface is in development. It allows
a user to quickly input the parameters they wish to study.

Fig. 6. Classic model results with melanin plotted against DVM over a
contour plot of the fitness surface. Colors specify high (red) and low (blue)
expected reproductive success.

Fig. 7. Tanning model, analytical results with melanin plotted against DVM
over a contour plot of the fitness surface. Colors specify high (red) and low
(blue) expected reproductive success.

Fig. 8. Tanning model, simulated results with melanin plotted against DVM
over a contour plot of the fitness surface. Colors specify high (red) and low
(blue) expected reproductive success.
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The output numerical data is visualized, enabling end users to
rapidly gauge the evolutionary trajectory of an organism. De-
tailed information of the generation-by-generation distribution
of phenotypic traits are displayed and available for download.
Previous simulations are stored allowing the user to reference
past simulations and compare results in a streamlined manner.

Our online interface also provides users with the ability to
sweep parameter ranges, provided minimum, maximum, and
step distances for one or more parameters. Through an itera-
tive process, multiple evolutionary trajectories are efficiently
modeled and results displayed by-by-side. The output data
can then be compressed and downloaded for a more detailed
analysis. This allows users to quantify the degree to which
initial parameter values affect their conclusions, providing
insight into the uncertainty of evolutionary trajectories. In
cases where a user wishes to sweep multiple parameters, trials
are conducted for each set of possible values.
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