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ABSTRACT
Understanding how an amino acid substitution a�ects a protein’s
structure is fundamental to advancing drug design and protein
docking studies. Mutagenesis experiments on physical proteins
provide a precise assessment of the e�ects of mutations, but they
are time and cost prohibitive. Computational approaches for per-
forming in silico amino acid substitutions are available, but they are
not suited for generating large numbers of protein variants needed
for high-throughput screening studies. We present ProMuteHT,
a program for high throughput in silico generating user-speci�ed
sets of mutant protein structures with single or multiple amino acid
substitutions. We combine our custom mutation algorithm with
side chain homology modeling external libraries, and generate en-
ergetically feasible mutant structures. Our e�cient command-line
invocation syntax requires only a few arguments to specify large
datasets of mutant structures. We achieve quick run-times due to
our hybrid approach in which we limit the use of costly energy
calculations when mutating from a large to a small amino acid. We
compare our mutant structures with those generated by FoldX, and
report faster run-times. We show that the mutants generated by
ProMuteHT are of high quality, as determined via all-atom RMSD
measurements for existing mutant structures in the PDB.
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1 INTRODUCTION
Knowing to what extent a mutation a�ects a protein’s stability
can aid in drug design studies that aim to deliver pharmaceutical
solutions for combating diseases caused by protein mutants [24].
Protein-compound interactions play a vital role in drug design
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studies, and generating in silico mutants is a major component
driving such work [20].

One approach for studying the e�ects of a mutation is to per-
form in vitro experiments by engineering amino acid substitution
directly in a physical protein, and then solving the structure via
X-ray crystallography. However, that is impractical because some
variants are di�cult to crystallize. Moreover if a large set of mu-
tant variants must be assessed, working with physical proteins is
prohibitive because a single experiment to infer the role of just one
mutation can be costly and may take weeks, or more, of wet-lab
work. Alternatively, it is possible to infer the e�ect of a mutation
in a physical protein without the need to resolve the structure.
Free energy of unfolding experiments that use denaturants involve
measuring the extent to which the wild type (WT), non-mutated,
protein denatures relative to the mutant, and a quantitative assess-
ment of the e�ects of the mutation(s) is a�ained via the Schellman
equation [25]. However that approach, too, involves wet-lab work,
and assessing the e�ect of more than a small handful of mutations
is impractical.

To help complement and inform mutation studies performed
on physical proteins, computational methods are available. Some
methods reason about the e�ects due to changes to side-chain con-
formations [9, 15, 23], others rely on heuristic energy functions
or database-derived potentials [10, 18], while others still leverage
insights from large data sets of homologous proteins [5, 27, 28].
Machine learning (ML) approaches developed for this need ex-
hibit great variety as well, with some relying on Vector Machine
methods [7, 14], while others utilize Random Forest and similar
approaches [6, 13, 16, 19].

Most of these computational methods do not output structure
�les of protein mutants, in spite of a need by protein docking and
drug design studies for many structures for high throughput screen-
ing purposes. Moreover, the majority of prediction and modeling
methods are most suited for generating and assessing structures
with single amino acid substitutions. It is because of these lim-
itations of existing tools that we have developed a stand-alone
program that e�ciently generates many protein mutants in silico.

2 RELATED WORK
Generating and modeling mutations in protein structures has been
done a variety of ways over the years. Some tools require extensive
human intervention, while others include near-automated capabili-
ties. In this section we survey a handful of tools for modeling and
generating amino acid substitutions.



In early work, amino acid substitutions were simulated not by
altering protein structure �les, but by modifying energy and struc-
ture parameters of simulations of proteins. Motivated by a need
to predict how mutations in�uence molecular functions, You, et.
al [29], indirectly studied the e�ects of mutations on bacteriophage
T7 molecules by altering molecule parameters in their simulations.
In such studies, no structure �les were ever generated.

More recent tools for generating mutant structures with amino
acid substitutions are available. PyMol [8] o�ers a rich set of Graph-
ical User Interface (GUI) tools for generating amino acid substi-
tutions. A user manually modi�es individual residues with the
aid of a rotomer library and a visual guide showing possible steric
clashes due to the choice of the side chain selected. �is approach
is amenable to creating only a small set of mutants, as each one
has to be created by-hand. Another tool, Swiss PDB viewer [12], is
unfortunately not available in Linux, and thus cannot be integrated
into a custom compute pipeline for generating large sets of mutants.

A few tools for generating mutants a�ord components of au-
tomation, but they still require a more-than-desired amount of
human intervention. Some of these are dependent on costly energy
calculations which reduces their applicability when thousands of
mutants are needed. One such tool is the buildmodel command in
the FoldX so�ware suite [26]. �e FoldX server and applications
were developed around an empirical force �eld for evaluating the
e�ects of mutations. �e main component of the so�ware calculates
free energy values for a macromolecule using a linear combination
of 9 empirical energy terms, including hydrogen bond energies,
energies due to steric clashes, and energies arising from van der
Waal forces. �e buildmodel option in FoldX is a relatively new
feature of the suite of tools, and requires composing a list by-hand
of all mutations that are needed. Most importantly, when multiple
mutations in a single structure are in silico generated, the energy
terms for the force �eld are calculated for each substitution, which
creates a computational bo�leneck when many in silico amino acid
substitutions in a single structure are sought.

3 MOTIVATION
�us, existing tools are available for in silico creating protein struc-
tures with amino acid substitutions. In the case of those tools that
require a user to manually interact with a GUI, they are not prac-
tical for creating large sets of mutant structures. Alternatively,
there exist tools for generating good mutant structures, but they
nonetheless have limitations. For example FoldX requires creating
a mutation list �le by hand. In addition, most tools rely on energy
and force �eld calculations, which prevents them from being used
to generate massive sets of mutants with multiple mutations each,
despite a need for such structures across di�erent research e�orts.
For example, upwards of 105 simulation steps are commonly used
to generate and score decoys for studying protein-protein docking
interactions [11], while machine learning approaches for study-
ing protein-ligand interactions are dependent on vast counts of
complexes for screening drug targets [1].

In this work we present a new, hybrid compute pipeline for
generating in silico mutations, whose reliance on costly energy
calculations we reduce as much as possible. We are motivated by a

need to generate large sets of mutant structures. To that e�ect, we
have developed ProMuteHT, with two main goals in mind :

(1) Ease of specifying which mutants should be generated
(2) Reducing the need on energy calculations to improve per-

formance when scaling to generate upwards of hundreds
of thousands of mutant structures.

4 METHODS – COMPUTE PIPELINE
�ere are several components to our mutant generation process,
summarized in Figure 1. Upon input of user-supplied parameters
informing what in silico mutations are desired, PDB and FASTA �le
are fetch and preprocessed. �e mutant generation step includes
invoking one of two modules for each mutation that is speci�ed,
depending on whether the mutation is from a large to a small amino
acid, or small to large amino acid. All mutant structure �les are
energy minimized to account for unfavorable energetic terms that
might have been introduced during the in silico mutation.

4.1 Parameter Input, and Preprocessing
�ere are several command-line input formats accepted by pro-
MuteHT. One permits a user to specify a comma-separated list
of residue numbers, and/or range of amino acids, as well as the
speci�c amino acid substitution(s) to be performed. �e general
syntax is of the following form:

PDBID chains:chaine ress:rese,resn {
∗X } subs

where PDBID is the 4 alphanumeric structure ID from the Protein
Data Bank [3], chains and chaine are used to specify the chain(s)
in the protein on which mutations should be generated, ress and
rese are used to specify a range of residues to be mutated, and resn
are individual residues delimited by comma(s). Providing a single
le�er amino acid abbreviation in the residue designation portion of
the command permits specifying combinatorial n-wise sets. �e use
of the : permits specifying ranges (inclusive), while the optional
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Figure 1: ProMuteHT fetches a protein structure and its
FASTA �le from the PDB (1), enumerates a mutant list per
the user’s input parameters (2), processes the FASTA �le as
needed by SCWRL [17] when a small-to-large mutation is
required (3), and iteratively generates mutant �les (4) which
then are energy minimized (5).



parameters X and ∗ designate all, and hold �xed. �e subs �eld
indicates which amino acid substitutions should be performed, what
we call the targets, and consists of the single le�er abbreviations for
the 20 naturally occurring amino acids, as well as the lower case
characters pol, char, and phobic to specify amino acids that are
polar (Gln, Asn, His, Ser, �r, Tyr, Cys, Met, Trp), charged (Arg,
Lys, Asp, and Glu), and hydrophobic (Ala, Ile, Leu, Phe, Val, Pro,
and Gly). Consider the below two invocations:

1hvr A:B 96:X A (1)
2ped A:A 3,10:16 phobic (2)

Invocation (1) speci�es mutate chains A through B of PDB struc-
ture 1hvr, residues 96 through the end (residue 99), to residues Ala-
nine, and would result in a total of 2c × 4r × 1t = 8 mutants, where
the c, r, t subscripts refer to the number of chains, residues, and tar-
gets. Invocation (2) speci�es mutate chain A of PDB structure 2ped,
residues 3, and 10 through 16, and mutate each of them systemati-
cally to the hydrophobic residues, for a total of 1c × 8r × 7t = 56
mutants. More intricate examples are give in Section 5.1.

When the input parameters are parsed, checks are performed
for the values provided by the user. A warning message is output
and the program terminates whenever any of the following occurs:

• �e PDB ID supplied does not adhere to the 4 alphanumeric
character format in use by the Protein Data Bank

• �ere is no entry in the PDB for the provided ID
• �e speci�ed chain (or a chain in a range speci�ed), and/or

residues do not exist in the PDB structure �le
• �ere is ambiguity in the forma�ing of the syntax specify-

ing which mutants to generate.
If the input arguments would result in more than 250 mutants being
generated, the user is prompted to con�rm continue.

4.2 Generating Mutants
ProMuteHT is composed of several parts, including custom scripts
and our in-house developed so�ware, integrated among o�-the-
shelf open access tools and libraries. In an e�ort to reduce as much
as possible the need for force �eld calculations, we have identi�ed
the following two broad types of amino acid substitutions :

(1) large-to-small (LTS) amino acid substitutions
(2) small-to-large (STL) amino acid mutations.

Our iterative program for generating mutant PDB structure �les is
made up of LTS and STL modules for performing these tasks. In the
case that multiple mutations in a single structure are desired, they
are performed one-a�er-the-other. �e output structure that results
from invoking either the LTS or STL module is the input structure
for the next amino acid substitution in the list of mutations being
performed in silico (Repeat step in Figure 1).

�e LTS module removes atoms from a PDB �le to simulate
large-to-small amino acid substitutions. No energy minimization of
any kind is involved. See Figure 2 for a schematic. As an example,
mutating Valine or Leucine to Alanine involves removing the CG1
and CG2 atoms from Valine, and CG, CD1 and CD2 atoms from
the Leucine structure �le. Mutating Valine or Leucine to Glycine
involves removing all of the side chain atoms, including the CB
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Figure 2: Large-to-small (LTS) mutations in ProMuteHT do
not require energetics calculations. �e in silico mutation
involves retaining only the atoms of the target, smaller,
residue. To mutate Valine or Leucine to Alanine, we remove
the carbon atoms at the γ and δ positions (yellow boxes).

atom. �e CB, CG1, etc. are the Cβ , Cγ , etc. atom nomenclature
terms in use in PDB �les. Other LTS mutations, for example to
Serine, follow a similar methodology. Although a void is created
when this procedure is performed, especially when mutating a core
residue from a large to a small one (Phenylalanine to Glycine, for
example), the energy minimization step (Section 4.3) addresses this.

When a small residue is mutated to a larger one, the STL mod-
ule is invoked. It relies on the freely available [17] so�ware that
makes predictions about a side chain’s orientation. SCWRL uses
rotamer libraries [4] based on kernel density estimates to make
predictions about side chain con�rmations. Among several other
metrics, it is dependent on a hydrogen bonding function and a van
der Waals interaction potential. Although SCWRL is fast, we
want to minimize its use nonetheless because even brief en-
ergy calculations can amount to lengthy delays when tens
of thousands of mutations are being performed. SCWRL’s
input is a PDB �le, and the corresponding FASTA sequence with
edits specifying desired side chain replacements. In Step 3 of the
compute pipeline (Figure 1), a modi�ed FASTA �le is generated for
any mutant desired which requires a small-to-large mutation. For
example, if the FASTA sequence of the wild type is GAGGAFN, and
the third residue’s side chain is being mutated to aspartic acid, then
the modi�ed FASTA �le would be edited to contain GAdGAFN (we
underline the changes).

In the case of multiple-chain proteins, we do not use SCWRL
as-is, because in those cases it o�en cannot make a side chain
replacement. In that case, our so�ware extracts each chain in the
PDB �le, and uses SCWRL to mutate the residue in the chain where
the mutation is being performed. ProMuteHT then combines the
un-mutated chain(s) and the altered one, and the end product is a
multi-chain protein with the desired mutation.

4.3 Energy Minimization
Performing energy minimization is especially necessary when a
small-to-large mutation is involved. �at is because SCWRL does
not take into account steric clashes that arise due to the introduction
of new side chain atoms into the space occupied by the smaller



residue’s fewer atoms. Although mutating a large residue to a
small one using our LTS module does not introduce steric clashes,
there is nonetheless a void introduced, so energy minimization is
performed in those cases, too. We rely on the NAMD [22] so�ware
to perform 200 energy minimization steps, requiring a few seconds
of computation time, depending on the protein’s size. We chose 200
steps from empirical experiments in which we observed that most
structures by that time had se�led enough so that high velocity
atoms were no longer present.

5 RESULTS
To demonstrate the utility of ProMuteHT, we tallied its run-times,
assessed the quality of the mutants generated, and also compared
our approach with the mutation engine in FoldX. We used a quad
core Intel Xeon E5-2620 processors at 2.0GHz, with 16GB of RAM.

5.1 ProMuteHT v.s. FoldX, Speed
In Table 1 we show four invocations of ProMuteHT for generating
data sets with 13, 171, 342, and 418 mutants. �e real run-times
were measured using the linux time command.

Table 1: Run Times for sample invocations of ProMuteHT.

Invocation # res # muts run-time (s)
1hhp A:A 3,7,10:20 G 99 13 21.9
1crn A:A 12:30 pol 46 171 220

1pef A:A X:X X 18 342 407
1hvr A:B 20:30 X 198 418 586

To compare the run-times of ProMuteHT with FoldX, we invoked
both programs to generate two sets of mutants from PDB �les 1hhp
(99 residues) and 1pef (18 residues). We created by hand the re-
quired mutant-�le.txt parameter �les for specifying in FoldX what
mutations to generate. We found that to be prohibitive, because not
only must the target residue be speci�ed, but FoldX also requires
that the parameter �le specify the non-mutated residue at the sub-
stitution point. In comparison, the commands for invoking our
so�ware for generating the equivalent mutants are the following:

1hhp A:A 19G*,20:25 A (3)
1pef A:A X:X G (4)

Invocation (3) speci�es mutate chain A of structure 1hhp, residues
20 through 25 to an Alanine, paired with residue 19 being mutated
to a Glycine. �is generated the following 6 mutants:

• Mutant1 : res. 19 mutated to Glycine, and 20 to Alanine
• Mutant2 : res. 19 mutated to Glycine, and 21 to Alanine
• Mutant2 : res. 19 mutated to Glycine, and 22 to Alanine
• Mutant3 : res. 19 mutated to Glycine, and 23 to Alanine
• Mutant4 : res. 19 mutated to Glycine, and 24 to Alanine
• Mutant5 : res. 19 mutated to Glycine, and 25 to Alanine

Invocation (4) speci�es mutate all residues in Chain A of 1pef to
a Glycine. �e mutants for 1hhp and 1pef are shown in Table 2.
�e run-times reveal that ProMuteHT has far overall lower run-
times than FoldX when generating the same mutants. We suspect

that is because the buildmode of FoldX relies heavily on energy
calculations, and that even in the case of a small protein (1pef), the
computations required are non-trivial. However our in silico LTS
mutation process does not rely on energy calculations except for a
brief minimization run a�er all substitutions have been performed.
Although the speedup is only 2-3X, such a speedup would become
signi�cant if thousands of mutants were being generated.

Table 2: FoldX vs ProMuteHT run times for in silico gener-
ating two sets of mutants with 5 and 18 structures each.

mutants Run-Times (s)
protein # muts (comma delimited) FoldX ProMuteHT
1hhp 6 L19G and K20A, L19G

and E21A, L19G and
E22A, L19G and L23A,
L19G and L24A, L19G
and D25A

82.5 12.3

1pef 18 E1G, Q2G, L3G, L4G,
K5G, A6G, L7G, E8G,
F9G, L10G, L11G,
K12G, E13G, L14G,
L15G, E16G, K17G,
L18G

66.5 32

5.2 ProMute v.s. FoldX, �ality
To validate the quality of the amino acid substitutions performed
by ProMuteHT, we generated several mutants whose structures
we then compared to actual mutant structures in the PDB. We also
compared the quality of our structures to those generated by FoldX.

We searched the PDB and selected 20 wild type, mutant pairs,
involving substitutions to all possible naturally occurring amino
acids. Eleven of those entries include 2lzm as the wild type. �at is
because Ma�hews et al. have generated and resolved the structures
of many variants of Lysozyme from Bacteriophage T4 [2, 21]. We
used ProMuteHT to in silico mutate the wild type of each pair,
performing the same mutation that exists in the mutant structure.
For each generated mutant, actual mutant pair, we measured the
all-atom Root Mean Squared Deviation (RMSD), for both the full
structure and the mutated residues only.

�e run-times and comparative results of in silico mutating single
amino acids are shown in Table 3. �e RMSD all column lists the
all-atom RMSD measurements for the mutants generated by FoldX
(FX) and ProMuteHT (PM) for the entire structure compared to
the known PDB mutant structure. �e RMSD res column lists the
all-atom RMSD measurements for the mutants generated by FoldX
(FX) and ProMuteHT (PM) for just the atoms of the residue that
was mutated. Yellow, red, and green entries for the PM columns
identi�es mutant structures we generated that were equally as good,
worse, or be�er than those generated by FoldX, when compared
to the actual mutant structures available in PDB �les. Notice that
even in those cases where our generated structures were not as
good as those generated by FoldX, the RMSD values are nonethe-
less similar. When the RMSD measurements were calculated using
only the mutated residue’s atoms, the quality of the mutants gen-
erated by ProMuteHT was overall higher than those generated



Table 3: �e quality of variants output by ProMuteHT was
assessed by comparing in silico generated mutants with
mutant structures from the PDB with equivalent muta-
tions. Res=residue in the polypeptide chain, AA=Amino
Acid for the wild type and Mutant for the indicated Res, and
ASA=Accessible Surface Area. RMSD=Root Mean Squared
Deviation between the actual (from PDB) and in silico gen-
erated mutants. Colors specify structures output by Pro-
MuteHT (PM) that were worse (red), the same (yellow), or of
better (green) quality than those generated by FoldX (FX).

WT Structure Mutant RMSD all RMSD res
PDB res AA ASA AA PDB FX PM FX PM
1lz1 56 I 0.3 A 2hec 0.21 0.21 0.04 0.04
2lzm 149 V 0.0 C 237l 0.17 0.19 0.05 0.04
1lz1 110 V 60.1 D 1gfu 0.22 0.26 0.91 1.10
2lzm 105 Q 32.5 E 1l98 0.22 0.25 0.21 0.14
1lz1 54 Y 8.1 F 1wqq 0.21 0.22 0.77 0.06
1lz1 59 I 1.6 G 2hee 0.22 0.22 0.03 0.03
2lzm 157 T 41.8 H 1l09 0.08 0.11 0.85 1.12
2lzm 99 L 0 I 1l92 0.13 0.15 0.26 0.07
2lzm 120 M 16.4 K 232l 0.19 0.22 0.21 0.17
2lzm 6 M 0 L 230l 0.20 0.22 0.68 0.35
2lzm 99 L 0 M 1l93 0.13 0.15 1.10 1.06
2lzm 2 V 0 N 1gfe 0.22 0.24 0.85 1.36
2lzm 3 I 10.7 P 1l96 0.21 0.24 0.21 0.17
2rn2 48 E 10.8 Q 1rdb 0.19 0.23 0.18 0.17
1lz1 2 V 0 R 1gfg 0.22 0.25 0.85 0.77
2lzm 42 A 0 S 206l 0.15 0.15 0.04 0.03
1lz1 56 I 0.3 T 1oua 0.22 0.41 0.08 0.15
2lzm 44 S 57.5 W 216l 0.90 0.96 0.01 0.10
1lz1 56 I 0.3 V 2bqd 0.23 0.26 0.11 0.10
1lz1 110 V 60.1 Y 1g� 0.27 0.31 0.03 1.31

by FoldX, indicated by the green entries. Also notice that some
residues were deeply buried (low Accessible Surface Area), and
when mutating them from small to large amino acids, the in silico
generated structures nonetheless had good alignment with the ac-
tual mutant structures from the PDB. Overall, the quality of the
mutant structures generated by ProMuteHT is comparable –
and o�en better – to the quality of the structures generated
by FoldX, while our run times are better (Section 5.1).

We also assessed the quality of mutants generated by ProMuteHT
when multiple amino acid substitutions were performed in silico. As
with our validation of mutants with single mutations, we compared
the mutants we generated with PDB �les containing corresponding
mutations done in physical proteins. We identi�ed 10 wild type,
mutant pairs in the PDB, and in silico mutated the wild type struc-
tures to have the amino acid substitutions of the mutants in the
PDB. As we did when assessing the quality of performing single in
silico mutations, we calculated the all-atom RMSD values between
the actual and generated mutant �les. We also tallied the run-times
of both FoldX and ProMuteHT (Table 4). �e RMSD values all
are below 1Å, and indeed for several structures with mutations at
residues that are buried, the RMSD alignment between our gener-
ated and actual mutant structures were below 0.5Å. �e run-times

show that ProtMuteHT was faster (o�en twice as fast) than FoldX.
We show in Figure 3 the alignment for the generated (from wild
type 2lzm) and 190l (actual) mutant, both with 3 substitutions.

6 CONCLUSIONS
We have developed ProMuteHT for generating single and mul-
tiple amino acid substitutions in silico. With the aim of reducing
compute times in the case that large numbers of mutants need to
be generated, our goal from the onset was to limit the use of energy
and force �eld calculations, especially when performing amino
acid substitutions that did not produce steric clashes, which occurs
when mutating from a large to a small residue. �is approach has
enabled us to achieve considerable speedup over FoldX, while still
generating quality mutant structures. Our so�ware also provides a
simple command-line syntax to facilitate easily specifying which
mutants to generate.

A limitation of our current implementation is mutating multiple
amino acids in di�erent chains of a multi-chain protein. We are
prevented from currently doing this because of the choice of syntax
for specifying which mutations should be in silico generated.

In on-going work, we are expanding and modifying the syntax
of the input parameters to provide a user an even richer set of
mutation options that they might specify. Also, we are extending
the ProMuteHT so�ware to leverage multiple cores to expedite
the generation of mutants even more. Extensions to our so�ware
will also provide the user with options to specify parameters for the
energy minimization portion of the compute pipeline. Lastly, the
so�ware is being deployed onto a web-server, which will provide
an easy-to-use Graphical User Interface enabling generating many
mutants with just a few mouse clicks. �e ProMuteHT so�ware
is available from the authors for non-commercial use.

Figure 3: Aligning a mutant generated in silico by Pro-
MuteHT (blue) with an actual mutant structure with equiva-
lent mutations (magenta) shows a very good match. Amino
acids substitutions performed were N53, N55A, and V57A in
input PDB wild type structure 2lzm. �e generated mutant
achieved an RMSD of 0.20Å with the pdb �le 190l which con-
tains the actual mutations.



Table 4: Run-time and performance quality measurements for generating mutants with multiple amino acid substitutions.
We used all-atom RMSD of the entire structure to measure the quality of the generated mutant when compared to the actual
PDB mutant structure with equivalent mutations. Run-times are in seconds. SS=Secondary Structure, and ASA=Accessible
Surface Area.

all-atom Run-times (s)
PDB WT Mutant Mutations SS ASA RMSD FoldX ProMuteHT

1LZ1 1LHM C 77 A, C 95 A T, H 14.67, 1.28 0.203 3.4 1.7
4LYZ 1HEN I 55 V, S 91 T T, H 0.43, 0.43 0.407 3.1 1.3
4LYZ 1HEQ T 40 S, S 91 T S, H 0.07, 0.43 0.416 3.2 1.6
2LZM 1L49 A 98 V, T 152 S H, H 0.00, 0.00 0.211 5.1 1.9
2LZM 1L89 L 99 A, F 153 A H, H 0.00, 0.05 0.250 7.1 2.6
4LYZ 1HEP T 40 S, I 55 V, S 91 T S, T, H 0.07, 0.43, 0.43 0.424 6.7 2.5
2LZM 190L N 53 A, N 55 A, V 57 A C, T, S 85.72, 78.55, 44.24 0.202 7.3 2.4
2LZM 1L50 A 98 V, V 149 C, T 152 S H, H, H 0.00, 0.07, 0.00 0.195 6.8 2.2
2LZM 1L51 A 98 V, V 149 I, R 152 S H, H, H 0.00, 0.07, 0.00 0.225 7.2 2.3
451C 1DVV F 7 A, V 13 M, F 34 Y, E 43 Y, V 78 I T, T, T, T, H 1.89, 54.33, 39.66, 59.42, 6.90 0.869 9.6 3.1
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