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ABSTRACT
Predicting how a point mutation alters a protein’s stability can
guide drug design initiatives which aim to counter the e�ects of
serious diseases. Mutagenesis studies give insights about the e�ects
of amino acid substitutions, but such wet-lab work is prohibitive
due to the time and costs needed to assess the consequences of even
a single mutation. Computational methods for predicting the e�ects
of a mutation are available, with promising accuracy rates. In this
work we study the utility of several machine learning methods and
their ability to predict the e�ects of mutations. We in silico generate
mutant protein structures, and compute several rigidity metrics for
each of them. Our approach does not require costly calculations of
energy functions that rely on atomic-level statistical mechanics and
molecular energetics. Our metrics are features for support vector
regression, random forest, and deep neural network methods. We
validate the e�ects of our in silico mutations against experimental
∆∆G stability data. We a�ain Pearson Correlations upwards of 0.69.

CCS CONCEPTS
•Computing methodologies→ Machine learning algorithms;
•Applied computing→ Bioinformatics; Molecular structural biol-
ogy;
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1 INTRODUCTION
�e amino acid sequence of a protein determines its structure and as
a result, its function. Even a single amino acid substitution can alter
a protein’s shape, which can be the cause of a debilitating disease.
For example, mutations of α-galactosidase cause Fabry disease, a
disorder that causes cardiac and kidney complications [14].

Wet-lab experiments can be used to engineer a protein with a
speci�c mutation, and the mutant directly assessed to infer the e�ect
of that amino acid substitution. �e wild type and mutant proteins
can be denatured to determine their relative unfolding rates, from
which the free energy of unfolding (∆∆G) can be calculated; it
is an indicator of whether a particular mutation is stabilizing or
destabilizing, and to what degree. Existing experimental data about
various mutations performed in physical proteins is available in
the Pro�erm database [23].

Unfortunately, conducting mutagenesis experiments on physical
proteins is expensive and time consuming, and thus experimental
data about the e�ects of mutations is limited. �erefore, computa-
tional methods can be helpful in estimating the e�ects of a mutation
on a protein structure, and several computational methods have
been developed in the past, with various degrees of success.

2 RELATEDWORK
In this section we survey the existing experimental and computa-
tional work for predicting the e�ects of amino acid substitutions.

2.1 Experiments On Physical Proteins
Wet-lab experiments provide the gold standard for directly mea-
suring the e�ect of mutations on a protein structure, measured by
∆∆G with respect to the wild type. Ma�hews et al. have generated
many mutants of Lysozyme from the Bacteriophage T4 [2, 7, 12, 26–
28]. �ey found that residues with high mobility or high solvent
accessibility are much less susceptible to destabilizing substitutions.
Although such studies provide precise, experimentally veri�ed in-
sights into the role of a residue based on its mutation, they are time
consuming and cost prohibitive. Additionally, some mutations are
so destabilizing that the mutant protein cannot be crystallized at all.
�us, only a small subset of all possible mutations can be studied
explicitly.



2.2 Computational Approaches
To complement and inform mutation studies performed on physical
proteins, computational methods have been developed over the
years. �ese methods strive to predict the e�ects of mutations.
Several have high prediction and accuracy rates in the 70-80% range.

Several computational methods for assessing the e�ects of mu-
tations �x the atoms in the backbone of a protein and proceed to
search for the best side-chain conformation, while others utilize
rotamer side chain libraries to adjust a structure in response to an
amino acid substitution [11, 19, 31]. Other approaches [24] rely
on heuristic energy measurements to predict the stability of pro-
teins in which side chains are perturbed. Yet another approach [15]
estimates the folding free energy changes upon mutations using
database-derived potentials. Prevost [32] used Molecular Dynamics
simulations to study the e�ect of mutating Barnase, and concluded
that the major contributions to the free energy di�erence arose
from non-bonded interactions. �us, progress has been made in
predicting the e�ects of mutations on protein stability. However,
many such methods rely on computationally intensive energy cal-
culations and are therefore time intensive.

2.3 Combinatorial, Rigidity Based Methods
A �rst generation of rigidity-based mutation analysis tools are avail-
able, but the extent of the types of in silico mutations that they can
perform are limited. Rigidity Analysis [16] is a combinatorial tech-
nique for identifying the �exible regions of biomolecules. Figure 1
depicts the cartoon and rigidity analysis results of PDB �le 1hvr of
HIV-1 protease. Rigidity analysis, which identi�es rigid clusters of
atoms, is distinguished from most other methods because it is fast.
It does not rely on homologous protein data, nor costly all-atom
energy calculations.

In our previous work we used rigidity analysis to probe how a
mutation to glycine destabilizes a protein’s structure. We com-
pared the rigidity properties of the wild type structure to the rigidity
properties of a mutant that we generated in silico using KINARI-
Mutagen [18]. On input of a Protein Data Bank (PDB) structure
�le, KINARI-Mutagen identi�es hydrogen bonds and hydrophobic
interactions. �e stabilizing interactions involving the atoms of the
side chain being mutated to Glycine are removed from the protein’s
model. �is is equivalent to computationally mutating a speci�c

(a) Cartoon Representation (b) Rigidity Analysis

Figure 1: Rigidity analysis of PDB �le 1hvr identi�es sets of
atoms belonging to rigid clusters. �e largest rigid cluster is
shown orange, which spans both halves of the protein. �e
larger rigid clusters are (cluster size : count) 11:6, 12:5, 15:2,
16:2, 19:2, 23:1 and 1371:1.

residue to Glycine, the smallest amino acid which has no side chain
atoms that form stabilizing bonds.

�e e�ect of a mutation on the protein’s structural stability
can be correlated with its e�ect on a protein’s rigidity. In our
previous work [5, 17] we measured the e�ect of the mutation by
recording the change in the size of the Largest Rigid Cluster (LRC)
of the mutant versus the wild type (WT, non-mutated protein). �e
rationale was that the LRC is an indicator of the protein’s rigidity
or �exibility. Predictions were validated against experimentally
derived ∆∆G unfolding measurements from the Pro�erm [23]
database. A negative ∆∆G value for a mutant structure reveals that
the mutant is less stable than the wild type, and thus the amino
acid substitution is destabilizing.

2.4 Machine Learning Based Approaches
Machine learning (ML) is a branch of arti�cial intelligence involving
algorithms that allow programs to classify, group, and learn from
data. �e regression problem proceeds via the following steps: a)
represent a set of known data points as a set of feature vectors
labeled by the corresponding output value, b) train a model that
best maps inputs to the correct output, c) use the model to make
predictions on a set of new (e.g. held out) data points. In Section 5
we detail each of the Support Vector Regression, Random Forest,
and Deep Neural Network methods we used.

Machine learning and statistical methods have been developed to
help predict the e�ects of mutations and to infer which residues are
critical. Cheng et al. [10] used Support Vector Machines to predict
with 84% accuracy the sign of the stability change for a protein due
to a single-site mutation. Also, data of amino acid replacements
that are tolerated within families of homologous proteins have been
used to devise stability scores for predicting the e�ect of residue
substitutions [35], which has been extended and implemented into
an online web server [36].

In our previous work [17], we used an SVM-based model that
combines rigidity analysis and evolutionary conservation, in ad-
dition to amino acid type and solvent accessible surface area, to
a dataset of proteins with experimentally known critical residues.
We achieved over 77% accuracy in predicting the sign of the change
of stability for a single point mutation to Glycine and Alanine.

Brender, et al [9], have developed a scoring function that rea-
sons about protein-protein interfaces. �ey used sequence- and
residue-level energy potentials in conjunction with a Random For-
est (RF) approach to achieve a Pearson correlation coe�cient of
approximately 80% between predicted and observed binding free-
energy changes upon mutations. Jia, et al [20], have employed
a variety of Machine Learning Tools to generate several models
based on thermostability data for assessing the e�ects of single
point mutations. �ey used 798 mutants from 51 di�erent protein
structures for which there is ∆∆G data, and a�ained accuracy rates
ranging from 78-85% among SVM, RF, NBC, KNN, ANN, and PLS
approaches, with the Random Forest Approach having the highest
accuracy. Li, et al [25], developed a model based on the Random For-
est algorithm for predicting thermostability changes due to amino
acid substitutions. In their approach they relied on 41 features, and
achieved accuracies of 79.9%, 78.2%, and 78.7% for single, double,
and multiple point mutation.



3 MOTIVATION
As discussed above, existing experimental methods still provide
only partial information about the e�ects of mutations. Computa-
tional methods can complement this information, but many existing
methods are time consuming, or alternatively, their accuracy could
be improved. �ere is a need for fast and reliable methods that can
e�ciently analyze the e�ect of a mutation of an amino acid on the
structure of a protein. As already discussed, machine learning based
methods have been used in the past by us and other researchers,
and they are a promising avenue to explore further.

In this work, we present fast and e�cient machine learning and
graph theory based methods for predicting the e�ect of a mutation
on a protein structure. �rough rigidity analysis, support vector
regression, random forests and deep neural networks, we predict
the e�ect of a mutation on the ∆∆G of a protein. We validated our
results by using experimental data from the Pro�erm database.
Our approach achieves strong performance in predicting the e�ect
of a single point mutation on a protein structure, while being fast
enough to run in a few minutes and sometimes seconds.

Several aspects of our work distinguish it from others. Firstly,
none of our features in use by our machine learning mod-
els require calculating energetics of various biophysical phe-
nomena. �e calculation of our metrics does not require costly
calculations based on statistical mechanics nor molecular energet-
ics. Our features are strictly structure-based, which is a purposeful
design decision to enable near real-time run-times. Secondly, the
number of data points that we use is far more than most
others have used. With 2,072 mutations for which we have exper-
imentally derived data from Pro�erm, our dataset far surpasses
in size most others, many of which have fewer than 1,000. �is
dataset is far greater than we used in our previous work due to our
recent expanded capabilities of generating mutations in silico [4].
Lastly, the majority of our features in use by our models are
derived from quick calculations detailing the rigidity prop-
erties of mutant, wild type pairs of protein structures. With
the exception of our past proof-of-concept work, nobody else has
used rigidity metrics on a large scale to assess their use in enhancing
models for predicting the e�ects of mutations.

4 DATA PREPARATION
Here we describe the source of our data, including how we pro-
cessed the Pro�erm ∆∆G values, how we generated in silico mu-
tants, and the split of the data into training, development and testing
sets for building our machine learning models. We enumerate our
features and explain how each is normalized.

4.1 Pro�erm Data, in silico mutants
We downloaded the entire Pro�erm plain-text database, and identi-
�ed 2,072 entries for single mutations with ∆∆G values. See Table 1
for a summary of the proteins and their mutations that we retained.

We used our in-house so�ware, Protein Mutation High �rough-
put (ProMuteHT) [4], for quickly generating protein mutants in
silico, with the mutations for which we had Pro�erm stability data.
�at so�ware is composed of several parts, including custom scripts
and algorithms, integrated with o�-the-shelf open access tools and
libraries. It generates large-to-small (LTS) as well as small-to-large

Table 1: Summary of the data obtained from Pro�erm.

Parsed Numerical Results
Unique Proteins 44
Total Mutations 2,072
Mutated Residues that are Hydrophobic 892
Mutated Residues that are Aromatic 161
Mutated Residues that are Polar 432
Mutated Residues that are Charged 654
Mutated Residues with 0-30% SASA 932
Mutated Residues with 30-50% SASA 532
Mutated Residues with 50+ SASA% SASA 608

(STL) amino acid substitutions. For an LTS mutation ProMuteHT
removes atoms from a PDB �le to simulate a substitution. For exam-
ple, mutating Leucine to Alanine involves removing from a protein
structure �le the CG, CD1 and CD2 atoms from the Leucine being
mutated. When a small residue is mutated to a larger one, the STL
module relies on the freely availably SCWRL 4.0 [22] so�ware that
makes predictions about a side chain’s orientation. To account for
the steric clashes that might arise due to replacing a small residue
with a larger one, we used the NAMD [30] so�ware to perform 500
energy minimization steps, requiring approximately 5 seconds.

�e rigidity of each mutant and its wild type were analyzed
using the publicly available rigidity so�ware by Fox et. al [13].
�e rigidity output data is of the form rigid cluster size : count,
which o�ers the distribution of clusters and their sizes that were
identi�ed. We used the rigidity data for each mutant, wild type
pair to calculate 6 di�erent rigidity metrics. See [3] for a complete
discussion explaining the motivation and utility of these metrics at
inferring the e�ects of mutations.

4.2 Features and Data Split
From the Pro�erm data and our rigidity calculations, we derived
the following 60 features:

• WT SASA: how exposed to the surface a residue is.
• WT Secondary Structure: four features indicating whether

the mutation took place in a sheet, coil, turn or helix.
• Temperature and pH at which the experiment for calculat-

ing ∆∆G was performed.
• Rigidity Distance (RD): one of lm, sig1, sig2, sig3, sig4, sig5.

See [3] for a full explanation.
• WT Rigid Cluster Fraction: 24 features giving the frac-

tion of atoms in the WT that belong to rigid clusters of
size 2, 3, . . . , 20, 21-30, 31-50, 51-100, 101-1000 and 1001+,
respectively.

• Mutation Rigid Cluster Fraction: 24 features giving the
fraction of atoms in the mutation belonging to the same
set of bins as above.

• Residue type: four binary features indicating whether the
residue is Charged (D, E, K, R), Polar (N, Q, S, T), Aromatic
(F, H, W, Y), or Hydrophobic (A,C,G,I,L,M,P,V).

�ese features along with their normalization scheme and range
are summarized in Table 2.



Table 2: Feature summary.

Feat.
#

Name Norm. Range

1 WT SASA None [0, 1]
2-5 WT Secondary Structure None {0, 1}
6 Temperature 0-1 [0, 1]
7 Potential of Hydrogen (pH) pH ≈ [−1, 1]
8 Rigidity Distance (RD) Standard R
9-32 WT Rigid Cluster Frac. None [0, 1]
33-56 Residue Rigid Cluster Frac. None [0, 1]
57-60 Residue Type None {0, 1}

Normalization “0-1” refers to the mapping
xi −min(x)

max(x) −min(x) (1)

while “pH” normalization refers to a slight variant that maps pH of
0 to -1, 7 to 0 and 14 to 1:

xi − 7
7 . (2)

Standardization refers to normalizing the feature to be zero-mean
and unit-variance:

xi − µ

σ
(3)

We estimated the feature mean (µ) and standard deviation (σ )
on the training set, and used these same values to transform the
development and test sets. Our ∆∆G labels were also standardized
prior to training using the training set statistics. �e ∆∆G values
fall in the range of [-5.02, 4.55] a�er standardization.

Our 2,072 data points were randomly split into a training set
(1,438 data points), a development set (324 data points) and a test set
(310 data points), under the constraint that all instances of each WT
appear in a single dataset. �is constraint was used so that we
can assess how well our methods generalize to new protein
wild types, andmeans that our reported results aremore pes-
simistic than theywould be under anunconstrained random
split.

5 METHODS : SVR, RF, DNN
In this section, we provide more details about three popular machine
learning methods, Random Forest, Support Vector Regression and
Deep Neural Networks, that we used for predicting ∆∆G. �at is,
we solve a regression problem: our objective is building a function
that minimizes the di�erence between calculated (predicted) and
actual observed target values for all data points in the training set.

5.1 SVR
Support Vector Machines are supervised learning models that are
widely used for solving classi�cation and regression problems. In
case of Support Vector Regression (SVR), the aim is to minimize the
generalization error bound in order to achieve strong generalization
[6]. �e generalization error bound is the combination of the train-
ing error and a regularization term that controls the complexity of
hypothesis space [34]. SVR works based on generating a regression
function in a high dimensional feature space where the input data

are implicitly mapped using a kernel function. �e kernel function
can be linear or nonlinear (polynomial, sigmoid or radial basis).

�e SVR model that we used in this work for ∆∆G prediction
were implemented using Scikit-learn [29], which is a free machine
learning library for the Python programming language. Scikit-
learn o�ers a variety of easy to use clustering, classi�cation and
regression algorithms implementations.

We used grid search to tune the parameters of the model using
our training and development sets. For the SVR model we tuned
three main parameters; the penalty parameter of the error term
(regularization constant) C , the kernel function and the kernel co-
e�cient γ . Using the development set, we evaluated the prediction
accuracy using values chosen from range of 0.1 to 1000 forC , exam-
ined RBF, linear and sigmoid as the kernel functions and changed
γ values from 0.0001 to 1. �e lowest error was achieved with C
equal to 150, when the RBF kernel was used and γ was set to 0.1.

5.2 Random Forest
Random forests (RFs) work by utilizing the power of decision trees.
A decision tree infers decision rules from the training data to carry
out a regression or classi�cation task. �e decision rules are gen-
erated based on the value of a feature that yields the best split of
the training data using a metric such as information gain or Gini
impurity index. A random forest is an ensemble learning method
that �ts a number of decision trees on multiple random sub-samples
of the training set and then use averaging to boost the accuracy of
the prediction and control over��ing [8]. Each tree uses a sample
size the same as the original training set. �e method allows these
samples to be the same as the original training set (Replicate) or to
be drawn with replacement (Bagging).

�e random forest model was also implemented using Scikit-
learn. To tune the model parameters, we examined the prediction
error while changing the number of estimators (trees in the forest)
from 10 to 1000. �e accuracy of the model did not show improve-
ments when beyond 150 estimators were used. For resampling
method, we used bagging (Bootstrap Aggregation), where each
tree in the forest was trained using random subsamples from the
training set chosen with replacement. Bagging showed over 30
percent improvement in accuracy compared to Replicate. For the
rest of parameters such as maximum depth of the tree and mini-
mum number of samples required to split an internal node we used
Scikit-learn default values, but plan to include these parameters in
our future tuning experiments.

5.3 DNN
A Deep Neural Network (DNN) is a supervised machine learning
model in which the input undergoes multiple ”hidden” layers of
non-linear transformation before a prediction is made. �is gener-
alizes the standard, shallow neural network which has only a single
hidden layer. Predictions, y, in our DNN are made according to the
following:

y = WT
(L)h(L) + b(L) (4)

h(i) = д
(
WT
(i−1)h(i−1) + b(i−1)

)
for i = 1, . . . ,L (5)

where h(0) denotes the input x , and our model parameters are matri-
cesW(0), . . . ,W(L) and vectors b(0), . . . ,b(L). �e hidden activation



function is denoted д; we explored two options: д(z) = tanh(z) and
д(z) = ReLU(z) = max(0, z). Our model parameters are learned
using �rst order optimization algorithms to minimize training set
mean squared error (MSE).

We implemented our DNN using TensorFlow [1], an open-source
machine learning toolkit. Our hyperparameters were tuned us-
ing a combination of random search and the Spearmint [33] tool.
Spearmint is a Bayesian hyperparameter optimization tool, incre-
mentally exploring the hyperparameter space with the objective of
maximizing expected improvement.

We tuned several hyperparameters on the developed set: num-
ber of hidden layers (1 - 4), number of units per layer (10 - 100),
learning rate (0.0001 - 0.5), weight initialization range (0.0001 - 0.1),
activation function (tanh, ReLU), and the optimizer used for back-
propagation (stochastic minibatch gradient descent, adam [21]).

6 RESULTS
�e SVR, RF and DNN models were trained initially using the
training set and the hyperparameters were tuned to optimize de-
velopment set performance as described in Section 5. A�er the
optimal parameters were identi�ed, in a �nal round of training for
SVR and RF, the samples in training set and development set were
combined and used as the training set. For DNN, whose results
were highly dependent on the initial random weight initialization,
we omi�ed this step of combination and retraining, and simply
used the best model trained on the training set alone. We repeated
our experiments using the features mentioned in Section 4 for six
con�gurations where in each con�guration we included one RD
measure for training. �e prediction accuracy of the models on
the test set was then evaluated using two metrics. We calculated
Root Mean Square Error (RMSE) and the Pearson correlation coef-
�cient between predicted and expected (actual) ∆∆G values. �e
prediction accuracy of the three models for each RD measure is
presented in Table 3. As shown in the table, the RF model consis-
tently outperformed the SVR and DNN models by having lower
RMSE and higher correlation coe�cients. �e DNN performance
typically falls in-between the other two. �is relative ordering is
fairly consistent regardless of the RD value used as a feature to train
the models. Averaged over the six experiments (last rows of Table
3), the RF gives the best performance and the SVR gives the worst.
While the RF RMSE and correlation variation over di�erent RDs
is rather small, RF generated the least RMSE (0.820) and highest
correlation (0.694) when sig2 was used in the feature set. With SVR
and DNN sig1 and lm showed the best performance among the RDs,
respectively.

7 DISCUSSION
To assess the utility of our three models in predicting the values
of ∆∆G due to point mutations, we compared the Pearson Correla-
tion Coe�cients of our Random Forest model (our highest scoring
average) against equivalent coe�cients for 12 other approaches
that we found in the literature [20]. Our Pearson Correlation Co-
e�cient value of 0.689 would rank our RF approach 9th of 12,
with Prethemut, ProMaya, and ELASPIC having a�ained higher
correlation coe�cient values of 0.72, 0.74, and 0.77, respectively.
Understandably, any such comparison must be taken with caution,

Table 3: Prediction accuracy (RMSE = Root Mean Square Er-
ror, C = Pearson Correlation)

RD Accuracy Measure SVR RF DNN
lm RMSE 0.961 0.839 0.865

C 0.534 0.673 0.647
siд1 RMSE 0.945 0.822 0.963

C 0.555 0.691 0.528
siд2 RMSE 0.960 0.820 0.957

C 0.534 0.694 0.537
siд3 RMSE 0.959 0.822 0.946

C 0.539 0.692 0.551
siд4 RMSE 0.986 0.827 0.931

C 0.500 0.687 0.571
siд5 RMSE 0.966 0.821 0.942

C 0.524 0.694 0.557
Avg. RMSE 0.963 0.825 0.934

C 0.531 0.689 0.565

for example due to di�erent data set sizes, di�erent cross validation
approaches, as well as data preprocessing. And although for this
work we focused on a regression model rather than a�empting a
binary classi�cation of the data, it is not uncommon in the liter-
ature for binary classi�cation models to excluded neutral (0±0.5
∆∆G kCal/mol) mutants. Any such similar pre-processing, which
we did not do, might be employed by other methods and models
a�empting regression analyses, which might ultimately a�ect a
ranking of di�erent approaches.

Another important point worth reiterating is that none of our
features were a�ained via direct calculations of energetic terms
arising from changes in a protein’s con�rmation due to a mutation.
Although we previously indicated that doing so was a conscious
e�ort on our part aiming to minimize costly energy calculations,
indeed excluding energy terms might be related to a possible lim-
itation of our approach. Namely, an amino acid substitution on
a protein structure might induce a destabilizing or stabilizing ef-
fect due to reasons that are not structure based, which our method
would not be able to reason about because our features are all purely
structural in nature.

8 CONCLUSIONS
We developed and present several machine learning based methods
to predict the e�ects of mutations on the stability of a protein. In
particular, our method predicts the change to the free energy of
unfolding upon mutation (∆∆G), using a combination of graph
based rigidity analysis and features like solvent accessible surface
area (SASA), temperature, pH, and the type of mutated amino
acid. We trained and tested our methods on an extensive dataset
taken from the Pro�erm database, which contains experimental
information about point mutations. We show that our algorithm,
especially the Random Forest (RF) based predictor, can predict the
∆∆G with high accuracy.

Our next steps involve developing methods to assess the e�ects
of multiple point mutations. While many methods predict the ef-
fect of a single mutation on a protein structure, only very few of



them assess how multiple amino acid substitutions a�ect a protein’s
structure and stability. Additionally, since our method is very fast
and e�cient, requiring as li�le as a few seconds to conduct a com-
putational experiment, we are developing a server which will allow
users to conduct hypothesis testing about the e�ects of mutations.
We envision that our server will run in near real-time, and thus
permit high-throughput studies, enabling screening a large number
of amino acid substitutions and their e�ect on a protein’s stability.
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