
Low Rank Smoothed Sampling Methods for
Identifying Impactful Pair-wise Mutations

Nicholas Majeske
Computer Science

Western Washington Univ.
Bellingham, WA

Majeskn@wwu.edu

Filip Jagodzinski
Computer Science

Western Washington Univ.
Bellingham, WA

Filip.Jagodzinski@wwu.edu

Brian Hutchinson∗
Computer Science

Western Washington Univ.
Bellingham, WA

Brian.Hutchinson@wwu.edu

Tanzima Islam
Computer Science

Western Washington Univ.
Bellingham, WA

Tanzima.Islam@wwu.edu

Abstract—Proteins are involved in nearly all biophysical
processes. Even a single amino acid substitution in a protein
can render a biomolecule inoperative, else be the cause of a
debilitating disease. Experimentally studying the effects of all
possible mutations in a protein is infeasible since it requires a
combinatorial number of mutants to be engineered and analyzed.
Computational methods developed for studying the impact of
single amino acid substitutions do not scale in handling the
number of mutants that are possible for two amino acid sub-
stitutions. In this work, we present an approach for reducing
the amount of mutation samples that need to be used to predict
the impact of pair-wise amino acid substitutions. We evaluate
the effectiveness of the proposed approach by – (1) generating
exhaustive mutations in silico for 8 proteins with 2 amino acid
substitutions, (2) analyzing the mutants via rigidity analysis, and
producing ground truth mutation data, and (3) comparing the
predictions from the sampled method to that in the ground truth
dataset. We show that it is possible to approximately predict the
effect of the two amino acid substitutions using as low as 25%d
of all mutations, and that these approximations are improved by
imposing a low rank constraint.

Keywords—protein, mutations, big data, sampling, reduction

I. INTRODUCTION

Inferring the effects of amino acid substitutions has a wide
range of applications in the biochemical sciences. Knowing
the extent to which a mutation alters a protein’s stability can
aid in drug design studies that aim to deliver pharmaceutical
solutions for combating diseases caused by protein mutants [1].

One approach to infer the effect of a mutation in the physi-
cal protein is to conduct a free energy of unfolding experiment
by denaturing a protein mutant and its non-mutated form (wild
type). The extent to which the wild type denatures relative to
the mutant is used by the Schellman equation to provide a
∆∆G measurement (change of Gibbs free-energy) offering a
quantitative assessment of the effect of the mutation(s) [2].

Unfortunately, mutation studies performed in the physical
protein are time and cost prohibitive. Performing even a
small subset of all possible mutations in a wet lab setting
and experimentally inferring the effects of those amino acid
substitutions might require months of work.

To help complement and inform wet lab work, modeling
and computational methods are available. They strive to predict

∗Brian Hutchinson has a joint appointment with the Computing and
Analytics Division of Pacific Northwest National Laboratory, Richland, WA.

the effects of mutations, with varying degrees of accuracy.
Early approaches searched for best side-chain conformations as
a measure of the impact of a mutation [3]–[5], and relied on
heuristic energy functions or database-derived potentials [6],
[7]. Other approaches are dependent on sufficiently large
datasets of homologous proteins [8]–[10]. Machine learning
(ML) approaches, which is a branch of artificial intelligence,
have also been leveraged to infer the effects of mutations.
Some rely on Vector Machine methods [11], [12], while
others utilize Random Forest and similar approaches [13],
[14]. Among these ML methods, several have high prediction
accuracy rates (upwards of 80%) of the effects of mutations
involving single amino acid substitutions.

MOTIVATION AND CONTRIBUTIONS

Energy-, homology-, and ML-based approaches for infer-
ring the effects of mutations have several drawbacks. All but
a few of them permit reasoning about the effects of single
point mutations only [9], [15], [16], [16]–[22]. But there is a
clear need to understand the effects of multiple mutations. For
example, for HIV-1 protease it has been shown that the median
number of mutations in the protease gene which confers
drug-associated resistance to protease inhibitors duranavir and
tipranavir is twenty-eight [23].

Unfortunately free energy changes for single mutations
cannot be summed to predict the effect of performing those
mutations all at once. There are several such instances in
the literature and ProTherm [24], a database of mutation
experiments done in the wet lab. For example, the single W94L
mutation in Barnase Bacillus amyloliquefaciens yields a ∆∆G
of -1.59 (ProTherm entry 2262), and the single H18G mutation
yields a ∆∆G of -0.98 (ProTherm entry 2263). These two
sum to -1.59 + -0.98 = -2.57. However, when both mutations
are performed at the same time in the physical protein, the
experimental ∆∆G value is -1.17 (ProtHerm entry 2264).

Many computational approaches also do not provide
details about the extent of a mutation. For example work
by Gohlke [25], which relies on rigidity analysis, outputs a
single all-atom cluster configuration entropy value, but does
not permit reasoning at the residue-level about the effect
of the amino acid substitutions. Eris [26] summarizes that
existing computational methods predict the general trend
of free energy change upon mutation, but that they fail in
providing details.



For this work, we are motivated by a need to explore which
pairs of mutations have an impact on a protein’s structure. Due
to the vast number of possible mutants with two amino acids
substitutions that can be engineered for even a small protein –
for a 99 residue biomolecule, for example, 1,751,211 unique
mutants are possible – this is a big data problem that even for
efficient computational approaches becomes intractable. Our
contributions are two-fold.

Firstly, we have engineered a software suite for generating
mutants with 2 amino acid substitutions, and generate an
exhaustive set of possible mutants for each of 8 proteins. We
perform a quick analysis of the rigid and flexible regions of
the in silico generated mutant and wild type structures using
an efficient graph theoretic algorithm, and rely on our past
rigidity metric scores to infer the effects of the mutations.
These exhaustive results are treated as the ground truth about
the effects of the amino acid substitutions.

Secondly, because performing such exhaustive studies is
computationally intensive, we present methods to accurately
approximate the ground truth using a fraction of the total
samples. In general, the fewer samples these empirical models
are based upon, the more computationally efficient they will
be, but at the expense of approximation quality. To counter-
act the effect of random noise on the empirical models, we
employ a smoothing technique based on matrix rank, yielding
low rank estimates that are able to filter out noise and improve
approximation quality.

II. RELATED WORK

Here we survey existing computational approaches for
inferring the effects of mutations, and overview low rank
factorization.

The majority of computational approaches for inferring
the effects of mutations reason about the impact of single
amino acid substitutions. PoPMuSiC 2.1 [27] makes predic-
tions about ∆∆G and generates a sequence optimality score.
AutoMute [28] is a ML-based method that requires a large
training set. CUPSAT [29] relies on energy potentials (atomic
and torsional angles), requires calculating Boltzmann’s energy
values, and is dependent on a radial pair distribution function,
whose calculation is time intensive. D-Mutant [30] constructs
a residue-specific all-atom potential and requires the use of
1,011 actual protein structures with 2Å resolution or better.
I-mutant2.0 is an SVM-based tool that correctly predicts (with
a cross-validation procedure) 80% or 77% of the data set,
depending on the usage of structural or sequence information,
respectively. The input is a single PDB [31] file, along with a
chain ID and residue number [32]. STRUM [33] is a physics-
based energy calculation approach that relies on multiple-
threading template alignment. McCafferty [34] has developed
an unfolding mutation screen (UMS) that relies on residue
propensity tables and calculates free energy changes.

Of the few approaches that permit reasoning about the ef-
fects of multiple mutations, none are able to perform sreening-
like analyses. MAESTRO and MAESTROweb [35] are a
machine learning based approach for predicting ∆∆G values
for single and multiple mutations, but do not permit a screening
of all possible multiple-mutation variants. mCSM [36], too,
permits inferring the effects of mutations, and predicts a ∆∆G

value, but it does not allow a user to perform a screen in
which a subset of pairwise mutations are assessed. DUET [37]
which consolidates mCSM and SDM, another prediction tool,
relies on a support vector machine approach to study missense
mutations. It, too, makes a prediction about ∆∆G but does not
allow identifying which pairwise mutations are impactful.

In our most recent work, we have developed a compute
pipeline for generating in silico all mutants with pairwise
mutations [38]. Our Allostery Impact Map infographic aids to
identify residues that when mutated along with another amino
acid cause a disruption to the protein’s stability as inferred
using rigidity analysis.

Low rank matrix factorization is at the heart of a wide
range of data analysis techniques [39]; for example, the
popular principal component analysis dimensionality reduction
technique [40]. Low rank is often found in matrices describing
interactions between two entities. One famous example is the
Netflix movie recommendation problem [41], [42], where the
goal is to predict what rating a given user would assign to a
given movie. The low rank property arises because the inherent
dimension of the interaction is significantly smaller than the
ambient dimension. For example, there are n kinds of users and
m kinds of movies, and the interactions between them explain
much of the ratings in user-movie ratings.

Other real world problems have exploited the low rank
structure, from image compression [43] to syntactic models of
natural language [44], [45]. As discussed in Section III-C, in
this work we explore low rank structure in matrices describing
the effects of double mutations in proteins. We use a singular
value decomposition [46] to find a low rank approximation
based on the well-known Eckart-Young-Mirksy theorem [47].

III. METHODS

Exhaustive mutation sets have been used in the past to
explore and identify impactful amino acid substitutions [48].
However, generating all possible mutants with 2 amino acid
substitutions can take several weeks – even months – of
compute time. For example, the exhaustive pair-wise mutation
dataset generated in [38] using 8 compute cores took upwards
of a week for pdb file 2lzm, of a 164 residue lysozyme.

In this paper, we present a multi-phase compute pipeline
(Figure 1) for evaluating several sampling methods to reduce
the amount of data used to make good predictions about the
effects of pairwise mutations. Such reduction in data improves
the scalability of the prediction operation. We also evaluate

Ground
Truth AIM

Empirical
AIM

Low Rank
AIM

Sampling

Low Rank
Approximation

PDB
File

Generate Mutants 
& Analyze Rigidity 

Evaluate Empirical and Low Rank
Against Ground Truth

Empirical
Mutation
Tensor

Ground Truth
Mutation
Tensor

Fig. 1: Pipeline for producing ground truth (Phase 1, blue),
sampling (Phase 2, yellow), and generating empirical and low
rank Allostery Impact Maps (AIMs) (Phase 3, red).



the quality of the proposed sampling methods by quantifying
how close the predictions are with respect to the exhaustive
mutation set. The pipeline is comprised of three phases:

• Phase 1: Generating ground truth – This phase
is required for validating the effectiveness of our
sampling methods. There are two tasks: (i) generating
the exhaustive set of all possible mutants having two
amino acid substitutions, and (ii) analyzing the effects
of the mutations using rigidity analysis.

• Phase 2: Sampling from ground truth – We apply
our proposed sampling methods to specifically study
the impact of pair-wise mutations to hydrophobic,
hydrophilic, and mutations sampled at random.

• Phase 3: Low Rank smoothing – To improve the
approximation quality of the sampled (empirical) Al-
lostery Impact Maps (AIMs), we impose a low rank
constraint, producing a low rank AIM. Smoothing
the empirical AIMs reduces noise and thus improves
approximation quality.

We explain each of these phases, as well as details of the tasks
involved, in the following subsections.

A. Phase 1: Generating the Ground Truth Data

Generating Mutant Structures: We rely on our ProMuteHT
software for generating mutants in silico [49]. It relies on a
variety of homology modeling, as well as energy minimization
MD runs, via integration with custom scripts tools such as
NAMD and SCWRL 4.0 [50]–[52].

Rigidity Analysis: Rigidity analysis [53]–[55] is a graph-
based method that provides information about the rigid regions
of biomolecules [56]. Atoms and their chemical interactions
are used to construct a mechanical model of a molecule, for
which a graph is constructed and analyzed using pebble game
algorithms [57]. The results are used to infer the rigid regions
of the protein, identified as rigid clusters of atoms (Figure 2).
We use rigidity analysis because analysis of a several hundred
amino acid protein takes only a handful of seconds.

For this work, we tally the counts and distribution of rigid
clusters in the wild type, as well as a mutant, to quantitatively
assess the effect of the amino acid substitutions performed in
silico. We use the following rigidity metric (see [48]) :

RDWT→mutant :

i=LRC∑
i=1

i× [WTi −Muti] (1)

where WT refers to Wild Type, Mut refers to mutant, and
LRC is the size of the Largest Rigid Cluster (in atoms). Each
summation term of RDWT→mutant calculates the difference
in the count of a specific cluster size, i, of the wild type and
mutant, and weighs that difference by i.

Allostery Impact Map: We use the rigidity analysis data to
create a Ground Truth Mutation Tensor, T gt ∈ Rn×n×361.
The (i, j, k)th element, T gt

ijk, contains the rigidity data for
performing the kth pair of substitutions (out of 192 = 361
total possible pairs of substitutions) at residues i and j.

From T gt, we build a Ground Truth Allostery Impact Map
(AIM), Mgt, [38] which provides a visual infographic based

(a) cartoon (b) rigidity results

Fig. 2: The output of rigidity analysis for PDB file 1csp (a)
indentifies atoms belonging to the same rigid clusters (b).

on quantitative data for reasoning about the effects of mutating
two residues. Figure 3 shows two sample AIMs, in which the
x− and y−axis values designate amino acids in the chain of
residues in a protein. The color of any one cell in the AIM
designates a sum value of all the metrics for all of the 361
mutant structures when the residues indicated by the x and y
values are exhaustively mutated.

Because of the large count of structures that make up an
exhaustive set of all pairwise mutations for a protein, we dis-
tribute the computational tasks for Phase 1 among 165 compute
cores. Each core further subdivided each computational task
via process-level parallelism by spawning 1 mutex process for
mutation for each available core in a given machine. With
these resources, we achieved a process-level granularity of
19k
(
n
k

)
/(165∗8) when generating all possible protein mutants

containing k mutation sites from a wildtype n amino acids.

In this phase, our compute pipeline leverages the knowl-
edge that no two pair-wise protein mutations depend on each
other to parallelize the chain of tasks – mutation generation,
rigidity analysis, and AIM generation for each mutation. These
mutually independent computation tasks mutating pair-wise
substitutions can be run in a distributed computing environ-
ment using local storage space on each compute machine. The
use of parallel computing ensures that the Phase 1 finishes fast
and that of local storage space ensures that these I/O bound
tasks (since involves file I/O) do not overwhelm the network
or the attached network filesystem.

(a) Example (b) AIM for pdb 1crn

Fig. 3: Allostery Impact Map : The color of a cell specifies the
sum values for our rigidity metric for all 361 mutants generated
by exhaustively mutating the amino acids indicated by the x
and y axis values. The cell marked A (a), at x = 3, y = 2, is
the sum metric for all 361 mutants for when residues i = 3 and
j = 2 were exhaustively mutated. (b) is reproduced from [38]



B. Phase 2: Generating the Empirical Allostery Impact Map

In estimating the Allostery Impact Map, we use three
methods of sampling to derive three different empirical AIMs.
These three methods include: sampling randomly from the
set of all mutations (True Random, denoted T emp

tr ), sampling
randomly from the set of mutations in which all substitutions
are to hydrophobic amino acids (Mutation to Hydrophobic,
denoted T emp

pho ), and sampling randomly from the set of muta-
tions in which all substitutions are to hydrophilic amino acids
(Mutation to Hydrophilic, denoted T emp

phi ).

For each of these three sampling methods, we analyze
the quality of approximation as a function of the quantity
of sampling in the following two ways. First, we sweep the
number of mutation site pairs being sampled in {25%, 50%,
75%, 100%} while holding the number of mutations sampled
for each of these site pairs constant at 19. Additionally, for
empirical AIMs where less than 100% of mutation site pairs
are sampled, we have an ’unfilled’ empirical where mutation
site pairs are left unsampled, and a ’filled’ empirical where all
unsampled mutation site pairs are set to the average metric of
all sampled mutation site pairs. Second, we sweep the number
of mutations sampled for each mutation site pair in {5%, 10%,
..., 95%, 100%} while holding the number of mutation site
pairs constant at 100%.

An important distinction to make in these sampling meth-
ods is that the sample space for T emp

pho and T emp
phi at a given

mutation site pair is significantly different from the sample
space of T emp

tr . In this work, we consider the following to
be the set of hydrophobic (pho) and hydrophilic (phil) amino
acids (abbreviations):

pho Ala, Gly, Val, Leu, Iso, Pro, Phe, Met, Trp

phil Tyr, Asn, Cys, Gln, Ser, Thr, Asp, Glu, Arg, His, Lys

To facilitate exploring if sampling from mutations to hy-
drophobic residues or sampling from mutations to hydrophilic
residues has any bearing on the quality of the results when
compared to sampling among any type of mutation, we define
MTpho and MTphil. Let WTSeq be the amino acid sequence
of length n for a wildtype protein and WTSeqi denote the ith
amino acid of that sequence for i ∈ {1, 2, ..., n}. Additionally,
let M denote the set of mutation sites at which amino acid
substitutions have been made for a given protein mutation.
Note that ‖M‖ = k and k = 2 in this work.

MTpho =
∏

i∈M fpho(WTSeqi) where fpho(x) ={
8 x ∈ pho

9 x ∈ phil

MTphil =
∏

i∈M fphil(WTSeqi) where fphil(x) ={
10 x ∈ phil

11 x ∈ pho

Thus, for k = 2 the number of possible mutations to
hydrophobic and hydrophilic for given mutation site pair M
are MTpho ∈ [64, 81] and MTphil ∈ [100, 121] respectively.
For for k = 2, the number of possible mutations for any
mutation site pair M is 192 = 361, meaning that MTpho

Fig. 4: Singular values for the eight proteins, revealing approx-
imately low rank structure. To aid comparison, singular values
have been normalized by dividing by the largest singular value.

and MTphil account for up to 22.4% and 33.5% of the set
of mutations site pair M .

In this phase, our pipeline again leverages a distributed
computing environment to apply our sampling methods. We
are able to do so because the sampling methods can run
independently of the others. To ensure scalability of our
compute pipeline, a separate process on a computing node
applies a sampling method to generate a subset of mutations.
Hence, the overhead of evaluating several sampling methods
is only bound by the slowest running method. Within each
process (that handles a specific sampling method), we leverage
the knowledge that mutations in different site locations can
be generated in parallel, and hence divide these tasks across
available cores on a computing node. Our use of scripting
languages BASH and Python ensures that the same job submis-
sion and management scripts can be used to run our pipeline
on a distributed computing environment such as Condor.

C. Phase 3 : Generating Low Rank Allostery Impact Map

While our empirical AIM is fast to generate, it by definition
paints an incomplete picture of the ground truth AIM. “Filling
in” the missing information requires making some assumption
about global structure of the ground truth matrix. In our case,
we assume that the ground truth matrix is low rank. The rank
of a matrix is the number of linearly independent columns
(and rows) in the matrix; equivalently, it is defined as the
number of non-zero singular values. Rank can be thought of
as a notion of complexity in the matrix: low rank matrices
can be explained by a relatively small number of underlying
factors. Figure 4 plots the singular values (in the conventional
descending order) for the ground truth AIMs for all of the
proteins considered. While none of the matrices are exactly
low rank, all are approximately low rank: most of the singular
values are approximately zero.

If we let Memp be the empirical AIM, our low rank matrix
is the solution to the following convex optimization problem:

arg min
M

‖Memp −M‖F (2)

s.t. rank(M) ≤ R (3)

where R is the desired rank (a value to be assessed empiri-
cally). The famous theorem of Eckert-Young-Mirsky states that



the closed form solution to this problem is:

Memp
R = UΣRV

T . (4)

Here U and R are the left and right singular values of Memp,
respectively, and Σ is the matrix whose diagonal contains the
singular values of Memp; all three matrices can be obtained
by a singular value decomposition. ΣR is Σ with all but the R
largest singular values replaced by zeros. Our low rank AIM,
M lr is defined to be Memp

R , the optimal rank R approximation
of Memp. Note that this assumes we want to approximate
Memp at all sites, which is suboptimal when using a sampling
strategy that does not sample all sites. Despite this limitation,
our experiments show that the approach works well, and we
leave weighted approximations [58] for future work.

D. Data Preparation

We generated all possible mutants with two amino acid
substitutions for 8 proteins (Table I). They varied in size from
the 46 residue PDB file 1crn of the protein crambin, to the
164 residue PDB file 2lzm of bacteriophage T4 lysozyme.

TABLE I: PDB files used, and mutants generated

PDB file num residues mutants runtime
1crn 46 373,635 23m
1pga 56 555,940 37m
1bpi 58 596,733 42m
1rop 63 705,033 51m
1csp 67 798,171 1.1h
1vqb 87 1,350,501 1.5h
1hhp 99 1,751,211 2.6h
2lzm 164 4,825,126 8.9h

E. Evaluation Metrics

We evaluate the quality of approximation using the Sum
of Absolute Error (SAE) for the ground truth AIM:

SAE =

n∑
i=1

n∑
j=1

|Mgt
ij −Mij | (5)

where M is either an empirical AIM, Memp, or a low
rank AIM, M lr. As the number of samples increases, Memp

approaches Mgt and the SAE approaches zero.

IV. RESULTS - CASE STUDIES

In this section, we evaluate the efficacy of our low rank
smoothed sampling methods by – (a) computing the SAE com-
pared to ground truth over empirical approximation (the lower
the better), and (b) measuring how accurately a significantly
reduced subset of the exhaustive mutation set can reconstruct
the characteristic bands (indicating mutation sensitive sites).

A. Low Rank Improvement over Random Sampling

Figure 5 shows that the low rank model consistently
reduces SAE relative to the empirical model on 1crn for
small values of the rank, R. As R approaches 46, M lr

approaches Memp and the improvement converges to 0. The
biggest improvements by smoothing are in the “Mutation
to Hydrophobic” case, suggesting this subset of the data is
particularly well-suited to the low rank assumption. In contrast,
the “Mutation to Hydrophilic” benefits the least from the
smoothing.

(a)

(b)

(c)

(d)

Fig. 5: Improvement in SAE by low rank smoothing relative to
the “filled” empirical approximation when randomly sampling
19 mutations across mutation site pair sampling at increments
of 25% for 1crn.



Figure 6 shows analysis of 1pga. Unlike 1crn, we see
a distinctive increase in the improvement as the fraction of
sites sampled approaches 1.0, achieving a relative reduction
in SAE of up to 34% (i.e. matches closely). This indicates
that all mutation sites encode unique information as opposed
to 1crn where most information is encoded in a small number
of sites. This shows that our study enables us to compare the
characteristics of mutation sites across different proteins.

(a) (b)

(c) (d)

Fig. 6: Improvement in SAE by low rank smoothing relative to
the “filled” empirical approximation when randomly sampling
19 mutations across mutation site pair sampling at increments
of 25% for 1pga.

B. Low Rank Approximation and Random Sampling Error

Figure 7 plots the absolute error (SAE) for the empirical
and low rank models for the three sampling types (Y axis)
across ranks (along X axis), using the “unfilled” sampling
strategy on 2lzm. For this protein, there is a clear basin of
good values of R ranging from 8-32. As expected, SAE of
our low rank approximation approaches to the empirical as it
approaches full rank.

Figure 8 repeats the previous analysis, with sampling from
75% of pair-wise mutation sites for 1hhp. Again a clear “sweet
spot” for the low rank approximation is evident, this time at
a much lower rank. Interestingly, the error is much higher for
“to hydrophobic” than “to hydrophilic” in this case. This might
be explained biophysically, because mutating a residue from a
hydrophilic to a hydrophobic one would render an otherwise
content surface exposed residue to become energetically unfa-
vorable. We leave an assessment exploring the hydrophobicity
and surface accessible attributes as affecting sampling rates to
future studies.

C. Heatmaps

Figures 9 and 10 present Mgt, Memp and M lr for 2lzm
and 1crn, respectively. In both cases, the low rank model is
able to detect the banded, low rank structure of the ground

Fig. 7: 2lzm : Empirical approximation error against low rank
approximation error for various ranks when sampling across
25% of mutation site pairs.

Fig. 8: 1hhp : Error rates of random sampling empirical
heatmap against low rank approximation for various ranks
when sampling across 75% of mutation site pairs.

truth matrix from the samples in the empirical model. In the
case of 1crn, it appears to over-generalize.

V. CONCLUSIONS & FUTURE WORK

We have developed a software suite for generating mutants
with 2 amino acid substitutions with the aim of motivating
a computational approach for identifying impactful pairs of
mutations. We have exhaustively generated mutant sets for
8 proteins, and analyzed both the wild type and mutants
using rigidity analysis; we call this exhaustive analysis the
ground truth. Because even computational approaches for such
exhaustive screens are time consuming, we have presented
several methods to accurately approximate the ground truth
using a fraction of the total samples from the exhaustive data.

We observed several interesting results when comparing the
ground truth, empirical, and low rank approximations among
our case studies. In some proteins – 2lzm for example –
prediction accuracy was sensitive to random noise in the data.
In those cases, a large rank was needed to smooth out the
noise when sampling only 25% of ground truth mutations.
We found that for some proteins – 1pga for example – the



Fig. 9: 2lzm : Ground truth (left), empirical approximation
(upper right), and low rank approximation (lower right).

Fig. 10: 1crn : Ground truth (left), empirical approximation
(upper right) and rank approximation (low right).

mutation sites encode unique information, but for others such
as 1crn, most information about the effects of mutations was
encoded in a small number of sites. The fact that a choice of
a sampling rate, and choice of the specific type of sampling
(whether from mutations to hydrophobic, or sampling from
mutations to hydrophilic residues) results in different low rank
approximations for different proteins suggests that any one
sampling strategy is not generalizable for all biomolecules.
We leave to future studies an exploration of the interplay
of sampling strategies in combination with structural and
classification properties of molecules in attaining empirical and
low rank based predictions with good approximations to the
ground truth for all proteins.

There are several ways the low rank modeling part of this
work could be extended. First, weighted low-rank decompo-
sitions [58] would likely improve the quality of the low rank

approximation. While our approximation optimization problem
is convex, rank minimization problems are in general non-
convex; for more sophisticated formulations we would likely
need to consider convex relaxations of rank [59]. Finally, it
would be worth exploring low rank decompositions explicitly
designed to be robust to noise [60].

REFERENCES

[1] B. Reva, Y. Antipin, and C. Sander, “Predicting the functional impact
of protein mutations: application to cancer genomics,” Nucleic Acids
Research, 2011.

[2] J. A. Schellman, “The thermodynamic stability of proteins,” Annual
review of biophysics and biophysical chemistry, vol. 16, no. 1, pp. 115–
137, 1987.

[3] R. J. Dunbrack and M. Karplus, “Conformational analysis of the
backbone-dependent rotamer preferences of protein sidechains,” Nature
Structural Biology, vol. 1, pp. 334–340, 1994.

[4] J. Janin and S. Wodak, “Conformation of amino acid side-chains in
proteins.” J Mol Biol, vol. 125, no. 3, pp. 357–386, Nov 1978.

[5] J. Ponder and F. Richards, “Tertiary templates for proteins: Use of
packing criteria in the enumeration of allowed sequences for different
structural classes,” Journal Molecular Biology, vol. 193, pp. 775–791,
1987.

[6] D. Gilis and M. Rooman, “Predicting protein stability changes upon
mutation using database-dervied potentials: Solvent accessibility deter-
mines the importance of local versus non-local interactions along the
sequence,” Journal of Molecular Biology, vol. 272, no. 2, pp. 276–290,
1997.

[7] C. Lee and M. Levitt, “Accurate prediction of the stability and activity
effects of site-directed mutagenesis on a protein core,” Nature, vol. 352,
pp. 448–451, 1991.

[8] C. Topham, N. Srinivasan, and T. Blundell, “Prediction of the stability
of protein mutants based on structural environment-dependent amino
acid substitutions and propensity tables,” Protein Engineering, vol. 10,
no. 1, pp. 7–21, 1997.

[9] C. Worth, R. Preissner, and L. Blundell, “Sdm-a server for predicting
effects of mutations on protein stability and malfunction,” Nucleic Acids
Research, vol. 39, no. Web Server Issue, pp. W215–W222, 2011.

[10] J. R. Brender and Y. Zhang, “Predicting the effect of mutations on
protein-protein binding interactions through structure-based interface
profiles,” PLoS Comput Biol, vol. 11, no. 10, p. e1004494, 2015.

[11] J. Cheng, A. Randall, and P. Baldi, “Prediction of protein stability
changes for single-site mutations using support vector machines,”
PROTEINS: Structure, Function, and Bioinformatics, vol. 62, pp. 1125–
1132, 2006.

[12] F. Jagodzinski, B. Akbal-Delibas, and N. Haspel, “An evolutionary
conservation & rigidity analysis machine learning approach for de-
tecting critical protein residues,” in CSBW (Computational Structural
Bioinformatics Workshop), in proc. of ACM-BCB (ACM International
conference on Bioinformatics and Computational Biology), September
2013, pp. 780–786.

[13] L. Jia, R. Yarlagadda, and C. C. Reed, “Structure based thermostability
prediction models for protein single point mutations with machine
learning tools,” PloS one, vol. 10, no. 9, p. e0138022, 2015.

[14] Y. Li and J. Fang, “Prots-rf: a robust model for predicting mutation-
induced protein stability changes,” PloS one, vol. 7, no. 10, p. e47247,
2012.

[15] E. Capriotti, P. Fariselli, and R. Casadio, “A neural-network-based
method for predicting protein stability changes upon single point
mutations,” Bioinformatics, vol. 20, Supplemental, pp. i63–i68, 2004.

[16] W. Lee, P. Yue, and Z. Zhang, “Analytical methods for inferring
functional effects of single base pair substitutions in human cancers,”
Human Genetics, vol. 126, no. 481-498, 2009.

[17] S. Mooney, “Bioinformatics approaches and resources for single nu-
cleotide polymorphism functional analysis,” Briefings in Bioinformatics,
vol. 6, pp. 44–56, 2005.



[18] S. Henikoff and P. Ng, “Predicting the effects of amnio acid substi-
tutions on protein functions,” Annual Reviews of Genomics Human
Genetics, vol. 7, pp. 61–80, 2006.

[19] S. Teng, E. Michonova-Alexova, and E. Alexov, “Approaches and
resources for prediction of the effects of non-synonymous single nu-
cleotide polymorphisms on protein function and interactions,” Current
Pharmacology Biotechnology, vol. 9, pp. 123–133, 2008.

[20] C. Topham, N. Srinivasan, and T. Blundell, “Prediction of the stability
of protein mutants based on structural environment-dependent amino
acid substitution and propensity tables,” Protein Engineering, vol. 10,
pp. 7–21, 2012.

[21] M. Masso and I. I. Vaisman, “Structure-based prediction of protein
activity changes: assessing the impact of single residue replacements,”
in Engineering in Medicine and Biology Society, EMBC, 2011 Annual
International Conference of the IEEE. IEEE, 2011, pp. 3221–3224.

[22] E. H. Kellogg, A. Leaver-Fay, and D. Baker, “Role of conformational
sampling in computing mutation-induced changes in protein struc-
ture and stability,” Proteins: Structure, Function, and Bioinformatics,
vol. 79, no. 3, pp. 830–838, 2011.

[23] S.-Y. Rhee, J. Taylor, W. J. Fessel, D. Kaufman, W. Towner, P. Troia,
P. Ruane, J. Hellinger, V. Shirvani, A. Zolopa, and R. W. Shafer,
“Hiv-1 protease mutations and protease inhibitor cross-resistance,”
Antimicrobial Agents and Chemotherapy, vol. 59, no. 8, pp. 4253–4261,
2010.

[24] K. A. Bava, M. M. Gromiha, H. Uedaira, K. Kitajima, and A. Sarai,
“Protherm, version 4.0: thermodynamic database for proteins and mu-
tants,” Nucleic acids research, vol. 32, no. suppl 1, pp. D120–D121,
2004.

[25] S. Radestock and H. Gohlke, “Exploiting the link between protein
rigidity and thermostability for data-driven protein engineering,” En-
gineering in Life Sciences, vol. 8, no. 5, pp. 507–522, 2008.

[26] V. Potapov, M. Cohen, and G. Schreiber, “Assessing computational
methods for predicting protein stability upon mutation: good on average
but not in the details,” Protein Engineering Design and Selection,
vol. 22, no. 9, pp. 553–560, 2009.

[27] Y. Dehouck, J. Kwasigroch, M. Gilis, and R. M, “Popmusic 2.1: a web
server for the estimation of protein stability changes upon mutation and
sequence optimality,” BMC Bioinformatics, vol. 12, 2011.

[28] M. Masso and I. I. Vaisman, “Auto-mute: web-based tools for predicting
stability changes in proteins due to single amino acid replacements,”
Protein Engineering Design and Selection, vol. 23, no. 8, pp. 683–687,
2010.

[29] V. Parthiban, M. M. Gromiha, and D. Schomburg, “Cupsat: prediction of
protein stability upon point mutations,” Nucleic Acids Research, vol. 34,
no. suppl 2, pp. W239–W242, 2006.

[30] H. Zhou and Y. Zhou, “Distance-scaled, finite ideal-gas reference
state improves structure-derived potentials of mean force for structure
selection and stability prediction,” Protein science, vol. 11, no. 11, pp.
2714–2726, 2002.

[31] F. C. Bernstein, T. F. Koetzle, G. J. Williams, E. F. Meyer, M. D.
Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi, and M. Tasumi,
“The protein data bank,” European Journal of Biochemistry, vol. 80,
no. 2, pp. 319–324, 1977.

[32] E. Capriotti, P. Fariselli, and R. Casadio, “I-mutant2. 0: predicting
stability changes upon mutation from the protein sequence or structure,”
Nucleic acids research, vol. 33, no. suppl 2, pp. W306–W310, 2005.

[33] L. Quan, Q. Lv, and Y. Zhang, “Strum: structure-based prediction of
protein stability changes upon single-point mutation,” Bioinformatics,
vol. 32, no. 19, pp. 2936–2946, 2016.

[34] C. L. McCafferty and Y. V. Sergeev, “In silico mapping of protein
unfolding mutations for inherited disease,” Scientific Reports, vol. 6, p.
37298, 2016.

[35] J. Laimer, H. Hofer, M. Fritz, S. Wegenkittl, and P. Lackner, “Maestro-
multi agent stability prediction upon point mutations,” BMC bioinfor-
matics, vol. 16, no. 1, p. 116, 2015.

[36] D. E. Pires, D. B. Ascher, and T. L. Blundell, “mcsm: predicting
the effects of mutations in proteins using graph-based signatures,”
Bioinformatics, vol. 30, no. 3, pp. 335–342, 2013.

[37] ——, “Duet: a server for predicting effects of mutations on protein

stability using an integrated computational approach,” Nucleic acids
research, vol. 42, no. W1, pp. W314–W319, 2014.

[38] N. Majeske and F. Jagodzinski, “Elucidating which pairwise mutations
affect protein stability: An exhaustive big data approach,” in proc. of
IEEE COMPSAC (International Conference on Computers, Software &
Applications), July 2018.

[39] A. P. Singh and G. J. Gordon, “A unified view of matrix factorization
models,” in Machine Learning and Knowledge Discovery in Databases,
2008, pp. 358–373.

[40] K. P. F.R.S., “Liii. on lines and planes of closest fit to systems of points
in space,” The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

[41] I. Netflix, “The netflix prize.”
[42] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for

recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.
[43] X. Zhou, C. Yang, H. Zhao, and W. Yu, “Low-rank modeling and

its applications in image analysis,” CoRR, vol. abs/1401.3409, 2014.
[Online]. Available: http://arxiv.org/abs/1401.3409

[44] S. Deerwester, S. T. Dumais, G. Furnas, T. Landauer, and R. Harshman,
“Indexing by latent semantic analysis,” vol. 41, pp. 391–407, 09 1990.

[45] B. Hutchinson, “Rank and sparsity in language processing,” Ph.D.
dissertation, University of Washington, 2013.

[46] G. Golub and C. Loan, Matrix Computions, 3rd ed. John Hopkins UP,
1996.

[47] C. Eckart and G. Young, “The approximation of one matrix by another
of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, Sep 1936.

[48] M. Siderius and F. Jagodzinski, “Mutation sensitivity maps: Identifying
residue substitutions that impact protein structure via a rigidity analysis
in silico mutation approach,” Journal of Computational Biology, vol. 25,
no. 1, pp. 89–102, 2018.

[49] E. Andersson and F. Jagodzinski, “Promuteht: A high throughput
compute pipeline for generating protein mutants in silico,”
in Proceedings of the 8th ACM International Conference on
Bioinformatics, Computational Biology, and Health Informatics, ser.
ACM-BCB ’17. New York, NY, USA: ACM, 2017, pp. 655–660.
[Online]. Available: http://doi.acm.org/10.1145/3107411.3116251

[50] G. G. Krivov, M. V. Shapovalov, and R. L. Dunbrack, “Improved
prediction of protein side-chain conformations with scwrl4,” Proteins:
Structure, Function, and Bioinformatics, vol. 77, no. 4, pp. 778–795,
2009.

[51] M. J. Bower, F. E. Cohen, and R. L. J. Dunbrack, “Prediction of protein
side-chain rotamers from a backbone-dependent rotamer library: a new
homology modeling tool.” J Mol Biol, vol. 267, no. 5, pp. 1268–1282,
1997.

[52] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, “Scalable molecular
dynamics with NAMD,” Journal of computational chemistry, vol. 26,
no. 16, pp. 1781–1802, 2005.

[53] D. Jacobs, A. Rader, M. Thorpe, and L. Kuhn, “Protein flexibility
predictions using graph theory,” Proteins, vol. 44, pp. 150–165, 2001.

[54] D. Jacobs and M. Thorpe, “Generic rigidity percolation: the pebble
game,” Physics Review Letters, vol. 75, pp. 4051–4054, 1995.

[55] I. Tsang and I. Tsang, “Cluster size diversity, percolation, and complex
systems,” Physical Review E, Statistical, Nonlinear, and Soft Matter
Physics, vol. 60, pp. 2684–2698, 1999.

[56] A. G. Ladurner and A. R. Fersht, “Glutamine, alanine or glycine repeats
inserted into the loop of a protein have minimal effects on stability and
folding rates1,” Journal of Molecular Biology, vol. 273, no. 1, pp. 330
– 337, 1997.

[57] D. Jacobs and B. Hendrickson, “An algorithm for two-dimensional
rigidity percolation: the pebble game,” Journal of Computational
Physics, vol. 137, pp. 346–365, 1997.

[58] N. Srebro and T. S. Jaakkola, “Weighted low-rank approximations,” in
Proc. ICML, 2003.

[59] B. Recht, M. Fazel, and P. Parrilo, “Guaranteed minimum-rank solutions
of linear matrix equations via nuclear norm minimization,” SIAM
Review, vol. 52, no. 3, pp. 471–501, 2010.

[60] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” J. ACM, vol. 58, no. 3, pp. 11:1–11:37, 2011.


