
Elucidating Which Pairwise Mutations Affect Protein
Stability : an Exhaustive Big Data Approach

Nicholas Majeske
Computer Science

Western Washington University
Bellingham, WA

majesken@wwu.edu

Filip Jagodzinski
Computer Science

Western Washington University
Bellingham, WA

filip.jagodzinski@wwu.edu

Abstract—The specific sequence of amino acids in a polypep-
tide chain dictates the three dimensional structure, and hence
function, of a protein. Mutagenesis experiments on physical
proteins involving amino acid substitutions provide insights en-
abling pharmaceutical companies to design medicines to combat
a variety of debilitating diseases. However such wet lab work is
prohibitive, because even studying the effects of a single mutation
may require weeks of work. Computational approaches for
performing exhaustive screens of the effects of single mutations
have been developed, but methods for conducting a systematic,
exhaustive screen of the effects of all multiple mutations are not
available due to the large number of mutant protein structures
that would need to be analyzed. In this work we motivate and
demonstrate a proof of concept approach for conducting in silico
experiments in which we generate all possible mutant structures
with 2 amino acid substitutions for three proteins with 46, 67, and
99 residues; for the largest protein we in silico generate 1,751,211
mutants. We leverage an efficient combinatorial algorithm to
assess the effects of the mutations among the mutant protein
structures. We also produce heat maps for several mutation
metrics to facilitate identifying which pairs of amino acid in a
protein have the greatest impact on protein stability based on
how those amino acid substitutions affect the protein’s flexibility.
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I. INTRODUCTION

Amino acids and the sequence in which they occur in a
protein determine a protein’s structure and consequently its
function. Even a single amino acid substitution can drastically
alter a protein’s shape, which may be the cause of a serious
disease. For example, Fabry disease is caused by mutations to
α-galactosidase, which causes serious cardiac complications.

Wet lab mutagenesis experiments provide definitive in-
sights about the effects of mutations, but such experiments
are time and cost prohibitive. Moreover, because there are 20
naturally occurring amino acids, even a small 50-amino acid
protein could be mutated to generate 2050 mutants. Even if
only 1 mutation is allowed, the number of possible variants of
a 50-amino acid protein is still 50× 20 = 1000.

Assessing the effects of mutations is nonetheless an impor-
tant screening tool needed by pharmaceutical companies that
aim to develop medicines to combat serious diseases caused by
protein mutants. A variety of computational approaches such
as molecular docking algorithms rely on costly all-atom energy
calculations to generate and score large sets of feasible protein

variants. Because of the huge possible configuration space of
a single protein, identifying as energetically or structurally
feasible the set of protein mutant candidate structures is a time
consuming task, often requiring months of compute time.

In this work we motivate and demonstrate an efficient
computational approach enabling an exhaustive screen for
assessing which pairwise mutations in a protein have the
greatest impact on a protein’s stability. We achieve this via
the use of an efficient combinatorial algorithm for calculating
the flexibility of a protein. This work is distinguished from
others in that it permits an exhaustive screen of all
possible pairwise mutations. The implications of this work
are numerous. Analyzing the effects of all possible pair-wise
mutations can yield information about allosteric sites. Allostery
is the phenomenon by which proteins transmit the effect of
binding to a location in the protein far removed from the
binding site [1].

II. RELATED WORK

To complement mutation studies performed on physical
proteins, computational methods are available. Most of them
aim to predict how an amino acid substitution affects a
protein’s stability. Approaches that rely on energetic analysis
as an indicator of the effects of mutations are often unable to
predict how mutations far removed from the active site affect
a protein’s structure. That is because amino acid substitutions
at residues not in the active site induce little or no changes
to the structure of a protein, else induce limited energetic
perturbations [2]. Various modeling and computational meth-
ods, including some available via web servers, are available.
They strive to predict the effects of mutations, with varying
degrees of accuracy. Early work algorithms ranged from those
that searched for best side-chain conformations as a measure
of the impact of a mutation [3]–[5], to those that relied on
heuristic energy functions or database-derived potentials [6],
[7]. Others were dependent on sufficiently large datasets of ho-
mologous proteins [8]–[10]. More recently, machine learning
(ML) approaches, which is a branch of artificial intelligence,
exhibit great variety, with some relying on Vector Machine
methods [11], [12], while others utilize Random Forest and
similar approaches [13], [14]. Among these ML methods, sev-
eral have high prediction rates of the effects of the mutations,
upwards of 70 and 80%.

The energy-, homology-, and ML-based approaches have
several drawbacks. All but a few of them permit reasoning



(a) cartoon (b) rigidity analysis

Fig. 1: Rigidity Analysis : Cartoon (a) and Rigidity analysis
(b) of PDB file 1edn. In (b), atoms in different rigid clusters
are colored by cluster membership and displayed as spheres.

about the effects of single point mutations only [10], [15]–
[21]. And those that afford assessing the effects of multiple
amino acid substitutions do not permit an exhaustive screen.

In the case where a web server is available, most cannot
be used to assess the effects of multiple mutations, in spite
of the fact that there is a wide range of diseases associated
with proteins with multiple mutations. For example, for HIV-
1 protease it has been shown that the median number of
mutations in the protease gene which confers drug-associated
resistance to protease inhibitors duranavir and tipranavir is
twenty-eight [22].

Thus progress has been made in developing software to
complement wet lab methods, but many such tools rely on
computationally intensive energy calculations, may need a rich
data set built up from a variety of experimental methods, which
is not available, or permit hypothesis testing of the effect of
a single amino acid substitution at a specific residue only.
Moreover most approaches have not been extended for use via
high-throughput analysis to assess the effect of all possible
pairwise mutations.

A. Rigidity Analysis and Rigidity Distance

Rigidity Analysis [23] is a combinatorial technique for
identifying the rigid and flexible regions of biomolecules.
Figure 1 depicts the cartoon and rigidity analysis results of
Protein Data Bank (PDB) file 1edn of Human Endothelin-1.
Rigidity analysis, which identifies rigid clusters of atoms, is
distinguished from most other methods by being very fast. It
does not rely on homologous protein data, nor on costly energy
calculations. See [24] for a full explanation of rigidity analysis.

Rigidity analysis was first used to explore the effects of
mutations by calculating a rigid cluster’s configuration entropy
value [25]. Later tools for rigidity-based mutation analysis
were developed, but the extent of the types of in silico
mutations that they could perform were limited.

III. METHODS

Our compute pipeline, made up of 4 distinct stages (each
color coded), is shown in Figure 2. The blue portions of
that figure designate the input (either in the form of data or
parameters). The orange box designates the scripting routines
that identify the set of all possible amino acid sequences

representing the mutant structures, while the green components
refer to the parallelized mutant generation and rigidity analysis
routines. The computation that would be performed by a
single CPU is outlined in purple. The parallel rigidity analysis
invocations generate rigidity metrics, which are aggregated into
a single metric data set (yellow), from which the Mutation Heat
Maps are produced. In this section we explain each component
of our pipeline.

A. Input

The input to our compute pipeline is a single Protein
Data Bank (PDB) file, which contains the x−, y− and z−
coordinates of the atoms of a protein whose structure has
been X-ray crystallography resolved. In the context of our
work, a PDB structure file is referred to as the wild type,
or non-mutated form, of a protein. We use the PDB file as
a template, from which mutants are in silico generated (see
Section III-C). Also as input is a parameter k, that specifies the
k-wise exhaustive mutations to be performed (Section III-B).

B. Identifying Mutant Set

Because the off-the-shelf software we rely on for generat-
ing protein mutants requires as input a sequence of amino acids
corresponding to the mutant structure, as a first step our custom
scripts systematically enumerate the amino acid sequences of
all the possible variants with the k mutations. For example,
assume there were only 3 kinds of amino acids, abbreviated
S, P and G, and that the wild type protein sequence was GS.
Then, the following would be the exhaustive list of sequences
of mutant structures that have 2 mutations:

• Mutant 1 : PP
• Mutant 2 : PG
• Mutant 3 : SG
• Mutant 4 : SP

The general formula for the count of mutants, m, repre-
senting the exhaustive set of variants for an n residue protein,
where each variant has k distinct amino acid substitutions
relative to the wild type, is the following :

m = rk ×
(
n

k

)
(1)
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Fig. 2: Compute Pipeline : All pair-wise mutations are gen-
erated, rigidity analysis is performed, and the rigidity metrics
are used to generated mutation heat maps.



where r refers to how many different amino acids can be
substituted at any location in the wild type sequence of residues
of a protein. Because there are 20 naturally occurring amino
acids, then r has the value 19 in the context of protein
structures. For the case study in Section IV, we generated and
analyzed all possible mutants with 2 amino acid substitutions
for PDB file 1crn, the 46 amino acid protein crambin. Thus,
we generated a total of 192 ×

(
46
2

)
= 361× 1, 035 = 373, 645

mutants, each with 2 mutations.

C. Generating Mutants & Rigidity Analysis

To generate the mutant structures from the wild type tem-
plate, we used the freely available ProMuteHT software [26].
It is a streamlined command-line java, C and python suite of
tools capable of in silico mutating any residue to any other
amino acid in a PDB protein file. We invoke ProMuteHT via
the command line, and each invocation generates an output,
mutant, PDB structure file. For our experiments, we used an
Intel Core i7-2600 CPU at 3.4GHz, with 8 CPUs and 16GB
of memory. We leveraged all 8 cores by spawning multiple
processes, each of which was responsible for calculating the
rigidity properties of an equally divided portion of the entire
mutant set identified by the previous step of our compute
pipeline. Run-times range from a few minutes for very small
proteins, to hours in the case of PDB file 1hhp.

D. Rigidity Analysis Metrics

To help reason about the effects of mutations, we take an
approach that does not rely on propensity tables, costly energy
calculations, nor is dependent on homology data. Instead we
rely on a fast combinatorial approach for assessing the rigidity
of a protein [23], [27] (See Figure 1, Section II-A). In rigidity
analysis, atoms and their chemical interactions are used to
construct a mechanical model. A graph is constructed from
the model, and pebble game algorithms [23] are used to
analyze the rigidity of the associated graph. An analysis of the
flexibility of the associated graph provides insights about the
flexibility of the protein from which the model and associated
graphs were constructed.

In this work we compare the rigidity analysis results of
the wild type, non-mutated form of a protein, to the rigidity
analysis results of a mutant with 2 amino acid substitutions.
We do this for all wild type, mutant pairs. We take inspiration
from previous studies in which the use of several rigidity-
based metrics were demonstrated in helping to discern the
effects of mutations. The first metric, the Largest Rigid Cluster
(LRC) [28], is a tally of the count of atoms in the largest rigid
cluster. Comparing the LRC of the wild type relative to the
LRC of a mutant was shown to be a fair indicator of the effect
of single mutations, using the hypothesis that a mutant with
a smaller LRC than the wild type’s LRC has a mutation that
is structurally destabilizing. We make use of the LRC rigidity
metrics in this work, and refer to any metric that relies on LRC
as an LRC metric.

A second class of rigidity based metrics which were
developed subsequently considered all cluster sizes and their
counts – and not only the LRC – in discerning the effect of
an in silico mutation [29], [30]. We refer to these metrics as
Rigidity Cluster Bin metrics. The RDWT→mutant rigidity

distance metric was developed to assess the impact of an in
silico mutation(s) on the stability of a protein :

RDWT→mutant :

i=LRC∑
i=1

i× [WTi −Muti] (2)

where WT refers to Wild Type, Mut refers to mutant, LRC
is the size of the Largest Rigid Cluster (in atoms). Each
summation term of the RDWT→mutant metric calculates the
difference in the count of a specific cluster size, i, of the wild
type and mutant, and weighs that difference by i.

E. Rigidity Metric Heat Maps

Because of the large count of protein variants that would
be produced from an exhaustive mutation screen involving 2
mutations for even a relatively small protein, we were in need
of a visualization scheme to facilitate the interpretation of the
large output data. We have developed several Rigidity Metric
Heat Maps to help identify the residue or pairs of residues,
which when mutated, would have the greatest impact on the
stability of a protein.

The first of these heat maps considers the Largest Rigid
Cluster among all of the possible 361 mutants that can be
generated for any pair of 2 amino acids in a protein. There are
361 possible mutants because each amino acid can be mutated
to one of the 19 other ones, and thus the possible set of all pair-
wise mutations for two amino acids is 192 = 361. The general
form of an LRC rigidity metric for any pair of 2 amino acids
is of the following form:

{mean,max,min}
19∑
x=1

19∑
y=1

LRCWT − LRCMutxy (3)

where the summation over x refers to the 19 different muta-
tions that can be performed at the selected first residue, and
the summation over y refers to the 19 different mutations
that can be performed at the selected second residue. The
mean,max,min components refers to the fact that the LRC-
based metric for all 361 mutants for any pair of amino acids
can take of different forms, such as the average, minimum,
difference, etc. of the RD value.

The second class of heat maps considers the
RDWT→mutant scores for all 361 mutants for a distinct
pair of amino acids in a protein. The general form of an
RDWT→mutant rigidity metric for any pair of 2 amino acids
is of the following form:

{mean,max,min}
19∑
x=1

19∑
y=1

RDWT→mutantxy
(4)

where the x and y summations refer to the same concept
as in the LRC rigidity metric, as do the mean,max,min
components.

A sample heat map is shown in Figure 3. Both the x− and
y−axis values designate amino acids in the chain of residues



in a protein. The color of any one cell in a heat map designates
a value for a metric for all of the 361 mutant structures when
the residues indicated by the x and y values were exhaustively
mutated (19 × 19 = 361). For example, the cell at x = 2
and y = 3 in Figure 3 is the metric calculated using all 361
mutants for when residues 2 and 3 were exhaustively mutated.

Fig. 3: Sample Heat Map : The color of any one cell specifies
the value for a metric for all 361 mutants which were generated
by exhaustively mutating the amino acids labeled on the x and
y axes.

IV. RESULTS - CASE STUDIES

To demonstrate the utility of our approach in performing
an exhaustive screen of all pair-wise mutations in a protein
with the aim that we identify pairs of amino acids that have
a significant pronounced effect when mutated, we analyze
the PDB file 1crn, the 46 amino acid protein crambin, and
PDB file 1hhp, the 99 amino acid HIV-1 protease. We also
performed an analysis of the 67 residue pdb file 1csp, which
is of the crystal structure of the bacillus subtilis major cold
shock protein. Because each of the 46 amino acids in 1crn
can be mutated to 19 different amino acids, and because all of
our mutants had 2 amino acid substitutions, the total count of
mutants we generated was 373,635 (see Section III-B), and for
1hhp, 1,751,211 mutants. For 1csp, a total of 798,171 mutants
were generated.

A. LRC metric, average LRCWT − LRCMut

For our first heat map visualization of the rigidity metric
data, we tallied the average of the LRCWT −LRCMut score
for all 361 mutants for each 2 pairs of amino acids in 1crn.
The average scores ranged from approximately 0 to +200,
shown in Figure 4. In the case of a large positive number,
the LRCmut is far smaller than the LRCWT , which we infer
to mean that the mutant is less stable than the wild type. Said
differently, mutating two residues that causes a big decrease
to the rigidity metric of a protein indicates that those 2 amino
acid substitutions are together highly structurally destabilizing
because the mutant has far fewer rigid clusters of significant
size.

Noteworthy in the heat map in Figure 4 are the residues
10 and 26. The striped bars designate that regardless of which
other residue is also mutated along with either of those two, the

Fig. 4: LRC Heat Map : average LRCWT − LRCMut.

average LRCWT−LRCMut score for all pairs of mutations is
nearing 100 or far more. This is telling that any pair mutations
that involve one of those residues will result in a mutant
structure that is far less stable than the wild type.

The information gleamed from this heat map might prove
of biological significant on many fronts. For example, if a
researcher wants to identify which pairs of residues should be
mutated to have the greatest chance of destabilizing a protein,
then residues 10 and 26 should not be included among the
likely candidates of residues.

B. Rigid Cluster Bin Distance, average RDWT→mutant

To assess the utility of a Rigid Cluster Bin Distance in its
ability to identify pairs of residues that when mutated had a
pronounced effect on the stability of a protein, we generated a
heat map analogous to Figure 4, but using binned cluster values
instead of LRC scores, for 1crn. In Figure 5, the horizontal
bands at residue 11 and 27 appear. This indicates that the
averaged RD scores as well as the averaged LRC scores are
able to identify those residues that are not good mutation
candidates if the goal is to destabilize a protein.

Fig. 5: Rigid Cluster Bin Heat Map : average RDWT→mutant.



C. LRC Metric, LRCWT − LRCMut Outliers, 1SD+

Because of our large data set (373,635) for PDB file 1crn,
any use of averaging of the metric scores might hide outlier
values that may exist for any one pair of amino acids that
were mutated. To identify outlier individual pairs of amino
acids that had a very strong effect on the stability of a protein
when mutated, we tallied the number of mutations whose LRC
metric is more than one standard deviation from the mean LRC
metric over all 373,635 mutants. Heat Map show in Figure 6.

Fig. 6: LRC Metric, RDWT→mutant Outliers 1SD+.

In Figure 6, we see that the point at residues 35 and 36
(on the y axis) are bright yellow, indicating that of the 361
possible mutants involving those amino acids, more than 300
have an LRCWT−LRCMut score that is more than 1 standard
deviation from the average LRC among all pairs of mutated
residues.

D. LRC Metric, LRCWT − LRCMut Outliers, 3SD+

To identify those pairs of amino acids that when mutated
had a significant, pronounced effect on the structural stabil-
ity of a protein, we performed a similar analysis described
in Section IV-G, but tallied the count of mutants that had
LRCWT −LRCMut scores at least 3 standard deviations from
the mean LRC metric for all 373,635 mutants (Figure 7).

In Figure 7, we see several pairs of amino acids, including
3 and 27, that when mutated, have a non-trivial count (upwards
of 10 or more) of LRC scores among their 361 mutants that
had LRC scores at least 3 standard deviations from the mean.
Our approach identified these residues as the most resistant
to mutations, because so many of the mutants involving those
residues had LRC scores that were excessively high.

E. LRC Metric, LRCWT − LRCMut Outliers, 1SD-

To identify those pairs of residues that, when mutated, had
a pronounced destabilizing effect on the protein, we tallied
the count of the 361 mutants for each pair of amino acid
substitutions that had an LRC score that was at least 1 standard
deviation below the mean of the LRC score for all 373,635
mutants. Heat Map shown in Figure 8.

Fig. 7: LRC Metric, RDWT→mutant Outliers 3SD+.

Fig. 8: LRC Metric, RDWT→mutant Outliers 1SD-.

In Figure 8, several pairs of amino acids had high counts
(nearing 350) of the 361 mutants that had LRC values at least
1 standard deviation below the average LRC across all 373,636
mutants. Specifically, when residues 33 and 8, and 33 and 7,
were mutated, most of the resulting mutants had Largest Rigid
Cluster far small than the average LRC for all experiments.
This indicates that those pairs of residues might be good targets
of mutation studies or protein engineering attempts aiming to
maximally destabilize a protein.

We also assessed the heat maps for the far larger PDB file
1hhp. Noteworthy in the heat map in Figure 9 are a series of
residues in the 20-25 range, as well as residues 34, and 83 and
87. The dark striped bars at those locations designate that even
if those residues are mutated, along with any other one, the
average LRCWT − LRCMut score for all pairs of mutations
is nearing 0, indicating the the mutation seems to have no
effect on the size of the largerst rigid cluster. Interesting, those
residues are not involved in the catalytic action performed by
the protein, and one might say therefore they are not critical,
so mutating them would not have any effect on the protein’s
stability. Indeed that is what we see because there is no change
in the mutant’s rigidit relative to the wildtype’s rigidity when



Fig. 9: LRC Heat Map : average LRCWT − LRCMut.

those residues are mutated.

There are bright (nearly white) points in the heatmap in
figure 9, which tell the inverse story. Residue 25 (y axis) often
is a bright white point, specifying a very high average rigidity
distance between the wild type and mutant. This indicates that
mutating that residue results in a mutant that is very unstable
relative to the wildtype because the difference between the
wildtype and mutant rigid metric is high. Interestingly, residue
25 is one of only a few residues that are involved in the
catalytic activity of the protein, so they play a special, critical,
role in the protein’s shape and function. The heat map thus
shows that when residue 25 is mutated, in many cases the
resulting mutant structure is vastly less stable that the wildtype,
as might be expected.

F. Rigid Cluster Bin Distance, average RDWT→mutant

To assess the utility of a Rigid Cluster Bin Distance in its
ability to identify pairs of residues that when mutated had a
pronounced effect on the stability of a protein, we generated a
heat map analogous to Figure 9, but using binned cluster values
instead of LRC scores. In Figure 10, the brightest yellow bar
appears near residue 57. This indicates that the averaged RD
scores as well as the averaged LRC scores are able to identify
that residues that are not good mutation candidates if the goal
is to destabilize a protein.

G. LRC Metric, LRCWT − LRCMut Outliers, 1SD+

Because of our large data set for PDB file 1hhp, any use of
averaging of the metric scores might hide outlier values that
may exist for any one pair of amino acids that were mutated.
To identify outlier individual pairs of amino acids that had a
strong effect on the stability of a protein when mutated, we
tallied the number of mutations whose LRC metric is more
than one standard deviation from the mean LRC metric over
all 1,751,211 mutants. Heat Map show in Figure 11.

In Figure 11, we see that the points at residues 35 (on the x
axis) and residue 57 (y axis) is bright yellow, indicating that of
the 361 possible mutants involving those amino acids, nearly
350 have an LRCWT − LRCMut score that is more than 1

Fig. 10: Rigid Cluster Bin Distance : average RDWT→mutant.

Fig. 11: LRC Metric, RDWT→mutant Outliers 1SD+.

standard deviation from the average LRC among all pairs of
mutated residues.

H. LRC Metric, LRCWT − LRCMut Outliers, 2SD+

To identify those pairs of amino acids that when mutated
had a significant, pronounced stabilizing effect on the structural
stability of a protein, we performed a similar analysis described
in Section IV-G, but tallied the count of mutants that had
LRCWT −LRCMut scores at least 3 standard deviations from
the mean LRC metric for all 1,751,211 mutants (Figure 12).

In Figure 12, we see several pairs of amino acids, including
70 and 32 ,that when mutated, have a non-trivial count
(upwards of 10) of LRC scores among their 361 mutants that
had LRC scores at least 2 standard deviations from the mean.
Our approach identified these residues as the most resistant
to mutations, because so many of the mutants involving those
residues had LRC scores that were excessively high.

I. LRC Metric, LRCWT − LRCMut Outliers, 1SD-

To identify those pairs of residues that, when mutated, had
a pronounced destabilizing effect on the protein, we tallied



Fig. 12: LRC Metric, RDWT→mutant Outliers 2SD+.

the count of the 361 mutants for each pair of amino acid
substitutions that had an LRC score that was at least 1 standard
deviation below the mean of the LRC score for all 1,751,211
mutants. Heat Map shown in Figure 13.

Fig. 13: LRC Metric, RDWT→mutant Outliers 1SD-.

In Figure 13, several pairs of amino acids had high counts
(nearing 350) of the 361 mutants that had LRC values at
least 1 standard deviation below the average LRC across all
mutants. Specifically, when residue 57 was mutated, most of
the resulting mutants had Largest Rigid Cluster far small than
the average LRC for all experiments, resulting in a very high
rigidity metric value. This indicates that mutating that residue
might be good target of mutation studies or protein engineering
attempts aiming to maximally destabilize a protein. Indeed that
residue is near a part of the protein commonly referred to
as a flap or arm, which is involved in a mechanical motion
necessary for the protein’s function, and mutating it might
reduce the protein’s capacity to perform its function.

Lastly, we also analyzed the 67 amino acid protein structure
1csp. Various heatmaps are shown in Figure 14, includ-
ing average LRCWT − LRCMut, average RDWT→mutant,
RDWT→mutant Outliers 1SD+, and RDWT→mutant Outliers
1SD-. We include the heatmaps for 1csp to showcase that the

pairwise mutation rigidity analysis approach is quite unique
to the structure being analyzed. For 1csp, residues 8 and 9,
as well as 16 and 17, are identified as having the greatest
impact on the structural stability of the protein when mutated
in combination with any other residue.

V. CONCLUSIONS & FUTURE WORK

In this work we have motivated the need for, and developed
a compute pipeline capable of exhaustively generating in silico
all mutants with 2 mutations for a user-specified PDB protein
structure file. We have analyzed the flexibility of each mutant
using an efficient combinatorial algorithm, and have analyzed
the rigidity metrics and fashioned a heat map to enable
identifying those pairs of amino acids that have a high impact
on the structure of a protein when mutated. To our knowledge,
this is the first compute pipeline capable of conducting an in
silico exhaustive mutation screen for all pairwise mutations.

We envision a variety of next steps. Firstly, several of the
off-the-shelf tools that are components of our pipeline require
extensive I/O operations. And although performing a few I/O
operations such as reading from or writing to a file is not
problematic, doing it hundreds of thousands, or millions of
times – as we have done – can greatly increase overall run-
times. To address this, we are refining our pipeline as well as
several of the open-source tools that we use to minimize the
use of I/O operations. Also, correlation studies are underway,
in which we are calculating Pearson Correlation as well as
RMSE values for predictions based on the rigidity metrics we
have generated, and the predictions they are used to make,
against experimental data for the effects of the mutations
involving those residues.
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