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Abstract

Pharmaceutical companies rely on the ability to
analyze the effects of protein mutations to develop
medicines for treating a variety of diseases. Although
mutagenesis experiments performed in a physical pro-
tein can provide insights about the role of a single
amino acid, such experiments are laboriously difficult
and may require months of wet lab work. Consequently
conducting exhaustive mutagenesis screens which in-
volve mutating all residues to all other amino acids,
is impractical. To help guide such wet lab experiments,
computational approaches are available, but most do
not permit an exhaustive screening of all residues
and their impact on a protein when mutated. For
this work we have integrated into a compute pipeline
and server our in silico mutation analysis method for
quickly generating protein variants. We leverage a
quick computational algorithm to assess the rigidity of
the wild type and mutants, and use the results to infer
which residues are most sensitive to an amino acid sub-
stitution. Our server and pipeline leverage concurrency
principles permitting an exhaustive screening of all
mutations for all residues in a protein in as little as a few
minutes. We report here on the performance and utility
of the pipeline, and present a case study to highlight
the utility of Mutation Maps generated by our server,
cMutant, available at https://cmutant.cs.wwu.edu/.

Introduction

Experimentalists mutate and analyze proteins to de-
velop better medicine for treating a wide range of
diseases [27]. Conducting mutation analyses in a
physical protein can require months of wet-lab work,
with the aim to provide information to help engineer
pharmaceutical drugs targeting specific proteins [22].

A variety of computational approaches and in silico
protein mutation analysis tools aim to provide a screen
to help guide wet lab experimentalists where they
might focus their attention for conducting mutagenesis
experiments on physical proteins. The majority of most

existing screening software tools permit exploring the
effect of only a single mutation at one specific residue
in a protein, while the few approaches that permit
exhaustive in silico studies for a protein have a variety
of limitations due to their dependencies on homology
or energetics data that may not always be available.

In our previous work [7, 2], we have motivated the use
of a fast combinatorial approach called rigidity analysis,
in combination with our custom in silico mutation
engine for generating mutant structure files, in assessing
the effects of amino acid substitutions.

For this work, we present a compute pipeline and
publicly available server, cMutant, that relies on con-
currency principles to greatly reduce the runtime of per-
forming an exhaustive mutation screen for all residues
in a protein. We reduce the runtime of in silico muta-
tion experiments from days to hours – and sometimes
to minutes. We achieve such a speedup by executing
our pipeline concurrently on multiple cores available
on our server. To permit a user to perform a visual
inspection of the effects of the exhaustive mutation
experiments, we generate a mutation map which is
presented via a graphical user interface, and which is
stored in a database for future retrieval. The utility
of our mutation maps we have demonstrated in our
previous work [28].

Related Work

To help complement and inform wet lab work, various
modeling and computational methods, including some
available via web servers, are available. They strive
to predict the effects of mutations. Early algorithms
ranged from those that searched for best side-chain
conformations as a measure of the impact of a muta-
tion [6, 16, 25], to those that relied on heuristic energy
functions [10, 19]. Yet others relied on large data sets of
homologous proteins [30, 3, 31]. More recently, machine
learning (ML) approaches have gained notoriety, with
some having high prediction rates upwards of 80% [4,
14, 17, 20]. However, the energy-, homology- and ML-
based approached have several limitations. Many of
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Figure 1: Rigidity analysis involves modeling a
biomolecule as a mechanical model, which is analyzed
using an efficient pebble game algorithms. The results
are used to infer the rigid and flexible regions of a
biomolecule.

them are dependent on large data sets [21, 32], some
require costly energy calculations [5, 24, 26], and others
still are dependent on free energy calculations as well
as access to propensity tables [23], data which is not
always available, or which is computationally costly to
calculate.

In our previous work, we developed several compu-
tational approaches for quickly generating large data
sets of in silico mutants. Incipient experiments enabled
mutating a residue to only one of Alanine, Glycine, or
Serine [15], but more recently our mutation software has
been expanded to permit in silico mutating a residue
to all possible other amino acids [2].

To help reason about the effects of mutations, we
take an approach that does not rely on propensity
tables, costly energy calculations, nor is dependent on
homology data. Instead we rely on a fast combinatorial
approach for assessing the rigidity of a protein [9,
13]. In rigidity analysis, atoms and their chemical
interactions are used to construct a mechanical model.
A graph is constructed from the model, and pebble
game algorithms [12] are used to analyze the rigidity
of the associated graph. The results are used to infer
the rigid and flexible regions of the protein (Figure 1).

Rigidity Distance

In this work cMutant compares the rigidity analysis
results of the wild type (WT), non-mutated form of
a protein, to the rigidity analysis results of the mutant.
This builds on our previous work [1, 8], in which
we developed and utilized aRDWT→mutant rigidity
distance metric to quantitatively assess the impact of
mutating a residue to one of the other 19 naturally
occurring amino acids:

RDWT→mutant :
∑i=LRC

i=1 i× [WTi −Muti]

where WT refers to Wild Type, Mut refers to mutant,
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Figure 2: Comparing the rigid cluster distributions
(sizes and counts) for the Wild Type and Mutant
structures enables assessing quantitatively the effect of
an amino acid substitution via the Rigidity Distance
RDWT→mutant metric.

LRC is the size of the Largest Rigid Cluster (in atoms).
Each successive summation term of the RDWT→mutant

metric calculates the difference in the count of a specific
cluster size, i, of the wild type and mutant, and weighs
that difference by i (Sample in Figure 2).

Server & Software Design

Our contributions for this work includes a concurrent
implementation of our mutation and analysis software
and the auto-generation of mutation maps [28] to aid
in the visual analysis of an exhaustive mutation screen.
In this section we describe the server and compute
pipeline, as well as the analysis methodology that
culminates in a mutation map.

Overview

cMutant offers features that are not available via
other tools and web services. Upon invocation, the
server generates all mutant structures as asked-for by
the user via the front-end. The infrastructure leverages
principles from concurrency theory to vastly reduce
the execution time needed for conducting exhaustive
mutation experiments. cMutant offers a graphical
user interface (GUI), that enables a user to view all
mutations via a mutation map which permits a user
to investigate individual point mutations and download
specific results. The system design is summarized in
Figure 3.

Back-End Infrastructure

The computational infrastructure integrates a variety
of our in-house custom software, as well as off-the shelf



Figure 3: cMutant includes front-end (GUI) and back-
end functionality, enabling a user to interface with our
custom mutation and analysis software.

and freely available tools. These include KINARI [9]
and ProMuteHT[2], along with SCWRL [18]. The
pipeline is invoked when a user interacts with the GUI
to specify the PDB ID (protein structure file), along
with parameters designating which residues are to be
mutated. Use of concurrency principles enabled by the
threading capabilities of the multi-core server allows for
each unique in silico point mutation to be invoked in
a separate thread. The count of threads is limited by
the number of available processors, and the output data
files of each experiment are stored to files locally on the
server for archiving and retrieval by the user.

The back-end infrastructure performs concurrent ex-
ecution of KINARI and proMuteHT for quickly gener-
ating and processing of a large set of protein mutants
(Table 1). cMutant is able to decrease exhaustive
protein mutation run times by a factor equal to that
of the number of cores available on the server, with
additional speed-up obtained through allowing muta-
tions to take advantage of the pipelining ability of the
CPU architecture. Each experiment requires analyzing
the wild type protein once, before any in silico protein
mutations are performed. This first step is not run
concurrently. Run-times were determined by clock time
at initialization of the compute pipeline through execu-
tion of all intermediate steps, until pipeline termination
resulting in a mutation map.

Front-End Infrastructure

The front-end GUI of cMutant includes an Experi-
ment (and Results) section. There users specify ex-
periment parameters, and view results as they become

Table 1: Run-times (minutes) for threaded (thread) and
serial (ser) invocations of cMutant, and speedup ratios
(sr) resulting from use of concurrency. # res=num. of
residues; # muts=num. mutants generated.

PDB File # res # muts thread ser sr
1PLW 5 100 0.65 4.37 6.72
1DPK 20 400 3.32 22.7 6.84
2LK0 30 600 7.35 45.3 6.16
1HN3 40 800 10.8 65.4 6.06
1YUG 50 1000 19.2 103 5.39
5NHQ 71 1420 36.9 190 5.15
1A1Z 83 1660 63.7 301 4.72
1HHP 99 1980 95.9 426 4.44

available. A Retrieve Experiments section permits
retrieving data from past computation runs, as well as
viewing the current server load.

The Experiment section offers a GUI (Figure 4)
with options for a user to:

(1) specify a PDB ID for which a mutation screen is
to be performed

(2) which residues to mutate (an all option is available
for designating an exhaustive screen)

(3) specifying what each selected residue(s) should
be mutated to, for which an all options is also
available.

Figure 4: cMutant’s GUI offers the option to specify an
exhaustive mutation screen, or to mutate a subset of
the residues (range of residues). Each selected residue
can be mutated to all other possible amino acids, or a
custom subset (mutation targets).



When an experiment is initiated, a user is provided
with an alphanumeric experiment ID which can be used
for later retrieval of the experiment data which is stored
to a database.

Server-side technologies such as NodeJS and Ex-
pressJS provide the functionality for transmitting data
between the back-end software and GUI. As data
is being generated by the multiple threads that are
invoked, the results are displayed and updated in real
time. Communication between the cMutant pipeline
and GUI is accomplished by using the in-memory data
structure store Redis.

The Result pane presents a Mutation Map, which
is a heat map generated from the distance metric
values (See section Rigidity Distance) computed for
each residue that was mutated. A full explanation can
be found in [28]. The color in each cell in a Mutation
Map corresponds to a rigidity distance, which is a
measure, based on the rigid clusters of the mutant and
wild type. A user can mouse-over a specific cell in the
Mutation Map to view the rigidity distance score for
that residue, or to download the data for that specific
in silico mutation. A rigidity distance far greater or far
less than zero indicates that the mutant is structurally
vastly different than the wild type, while a rigidity
distance score near zero specifies that the wild type
and mutant are structurally similar, as inferred using
the rigidity cluster data. The magnitude of the rigidity
distance can be used to indirectly infer the magnitude
of the impact of an amino acid substitution.

Figure 5: Mutation Maps : for each residue number
(y-axis), a color at each target residue (x-axis) specifies
the rigidity distance metric score for a mutation.

A sample Experiment results pane, for experiment
ga5a0maq, is shown in Figure 5. That mutation map
is for an exhaustive in silico mutation screen for the
30-residues PDB file 2LK0, which is the structure of
a RanBP2-type zinc finger of RBM5. A dynamically
updated color legend indicates that a red cell has a high
rigidity distance, while a blue cell has a low rigidity
distance score, and that the average, minimum, and
maximum Rigidity Distance scores are 40, -126, and

164. Most telling in the Mutation Map for 2LK0 is
that specific residues upon their in silico mutation to
certain residues yield very low (highly negative), or
very high (highly positive) rigidity distance scores. A
very low rigidity distance score for a residue’s mutation
to a specific amino acid indicates that that mutation
results in a mutant that has far more large rigid clusters
than the WT. Such a mutation can be inferred to be
stabilizing. The converse is true for very high positive
rigidity scores. In the case of 2LK0, using the Mutation
Map, the blue spots identify that residues 7, 9, 14, 21,
24, 27, and 30, have strong stabilizing effects on the
protein as inferred using rigidity analysis.

Case Study, 1HHP

To assess the speed and usefulness of cMutant, we
exhaustively in silico mutated all residues of PDB
structure 1HHP, which is the monomeric form of the
99 amino acid HIV-1 Protease. A zoomed in portion
(residues 15 to 40) of the Mutation Map for 1HHP is
shown in Figure 6.

Figure 6: Zoomed in Mutation Map for 1HHP, residues
15-40. Residues 22-26, as well as 28, and 30 and 31 are
especially sensitive to mutations as evidenced by the
red Rigidity Distance scores for nearly all mutations
performed at those residues.

Residues 24-26 of HIV-1 Protease constitute a cat-
alytic triad, the active site of the protein, on which
a host of wet lab experiments have been conducted
and for which there is a lengthy literature [11, 29].
The residues near the active site of HIV-1 Protease
are known to be critical to the protein’s function,
and indeed are highly resistant to mutations. Specific
residues at those locations must be present in order for
the protein to perform its catalytic function. As a first
proof-of-concept result, we consider it encouraging that
cMutant identified those residues near the active site
as being least resistant to mutations, because in silico



mutations performed on them in nearly all cases highly
disrupted the protein’s structure. See [28] for a more
detailed example of the utility and use, including a box
plot analysis, of Mutation Maps.

Future and On-Going Work

Future and-going work on cMutant involves three
main avenues, including 1) improving the server’s
speed by leveraging additional concurrency principles,
2) adding additional front-end GUI features, and 3)
assessing and improving the accuracy of the predictions
doled up by the Mutation Map. In our most recent
work, we have developed machine learning models
capable of predicting at up to 80% accuracy the effect
of mutations [8]. That predictive capability is being
integrated into cMutant.

For improving the GUI, we are developing addi-
tional UI elements to allow the user to quickly access
important trends and details of the results from a
computation experiment run. In addition to the mutant
and WT structure files, along with the rigidity data,
for each cell in a Mutation map that can be currently
downloaded, we aim to integrate a protein viewer
visualization engine that will color code the 3-D surface
of a protein to display rigidity metrics of those residues
on the surface.

A current limitation of the server is that it is able
to perform exhaustive mutation screens for single chain
proteins only. Current work in our lab has culminated
in an improved mutation engine, ProMuteHT, which is
being integrated into the cMutant pipeline allowing it
to reason about any protein in the PDB.

For further validation of the use of Mutation Maps
beyond what we have reported previously [28], we are
correlating our rigidity distance scores for point mu-
tations against ∆∆G data attained from experiments
on physical proteins, which gives empirical evidence
of the effects of mutations. We are tallying Pearson
Correlation coefficients, and aim to supplement the
Mutation Map data with that information.

Conclusions

We have developed a compute pipeline and server,
cMutant, for performing a rigidity-based mutation
screen that exhaustively generates and analyzes all
possible mutant structures with a single amino acid
substitution. We achieve fast run-times by leveraging
concurrency principles, and also generate a Muta-
tion Map which aids in a visual analysis enabling
identification of residues that are highly sensitive to
mutations. We present a case study for HIV-1 Protease,

and correlate our interpretation of the analysis of the
Mutation Map with known biological properties of the
protein’s active site.
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