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The following is a SHORT review of the pertinent equations and high-level topics that constitute the
main component of Molecular Dynamics (MD). This review is meant to supplement the information
that was presented in class during the lecture. Keep in mind that the goal of molecular modeling
is to perform computer simulations, or to do chemical experiments, with a computer rather than a
laboratory bench. Familiarity with basic Calculus concepts is assumed.

1 Physics Refresher - Newton’s Laws of Motion

Newton’s equations of motions are used to derive the position and velocities of individual atoms of
a biomolecular environment. First, recall that the instantaneous change in the position of a particle
is the velocity of the particle:

dri(t)
dt

= vi(t) (1)

and that the instantaneous change in the velocity of a particle is the acceleration of the particle:

dvi(t)
dt

=
Fi(t)
mi

(2)

where we have used the acceleration component of Newton’s second law, Force equals mass times
acceleration, F = ma. Thus, using equations 1 and 2, the atomic coordinates, r, and the velocity,
v, of atom i, with mass, mi, is a function of time.

2 Chemistry Refresher - Inter-atomic Interactions

The interaction between two atoms or molecules is caused by the “push and pull” forces that exist
between the two atoms or molecules. A measure of the strength of the attraction (or repulsion) is
called the potential energy. Information about the physical parameters of the two interacting atoms
or molecules, along with their separation distance, can be used to determine the potential energy
of the dual-atoms or dual-molecules. A potential energy function is the algorithmic procedure that
takes as input the physical parameters of the atoms or molecules and their separation distance, and
computes their potential energy.

Accurate potential energy functions take into account many of the physical and quantum-mechanical
aspects of atom interactions. For example, the Lennard-Jones potential (also referred to as the L-J
potential, 6-12 potential or, less commonly, 12-6 potential) is a simple mathematical model that
has been shown to accurately approximate the non-bonded interactions that exist between atoms
or molecules that are separated by a short distance. The non-bonded interactions include an at-
tractive force at long ranges (van der Waals force), and a repulsive force at short ranges (the result
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Figure 1: The Lennard-Jones potential is the mathematics representation of the two distinct forces
that exist between two particles: the attractive van der Waals force, and the Pauli repulsion force.
ε is the depth of the energy “well”, σ is the (finite) distance at which the inter-particle potential is
zero (generally set to 2Å), and r is the distance between the two particles.

of overlapping electron orbitals, referred to as Pauli repulsion force). The Lennard-Jones Potential
is the following:

V(r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]

(3)

where V(r) designates the potential energy of two atoms or molecules that are separated by a
distance r, ε is the depth of the energy “well”, and σ is the (finite) distance at which the inter-
particle or inter-molecule potential is zero. The values of ε and σ are dependent on the two atoms
or molecules that are being simulated. So, the σ and ε values for two argon atoms will be different
from the σ and ε values for two water molecules. Figure 1 is a graphical representation of the
empirically derived potential energy between two argon atoms and the corresponding plot from the
Lennard-Jones equation of the same phenomenon. Thus,

the main goal for using the Lennard-Jones potential is that we can determine
the potential energy that exist between two atoms or molecules by just using
a formula (and a rather simple one), instead of having to carry out lengthy
quantum mechanics calculations.

The Lennard-Jones potential only describes the non-bonded interactions that occur between atoms
or molecules, but there are bonded interactions, also, for which there are mathematical equations.
Bonded interactions include bond stretching, bond bending, bond stretching and bending, as well
as torsion effects. The TOTAL potential energy between two atoms or molecules is thus a sum of
the potential energies that are caused by the bonded and non-bonded interactions.

3 Molecular Dynamics - Potential Energy and Atom Position

Assuming that we can calculate the potential energy between all atoms in a simulation, how can
we use that information to determine the motion of the atoms? First, recall Newton’s Laws Of

2



Motion, specifically Equation 2. If you know the Force that is imparted on an atom, then you
can calculate the velocity of the atom, and if you can calculate the velocity of an atom, then you
can determine the location of the atom at each time step of the motion. That is the main idea of
Molecular Dynamics. But first, one more piece of information is required:

The force Fi exerted on atom i by the other atoms in the system is given by the
negative gradient of the potential energy function V which in turn depends on the
coordinates of all N atoms in the system:

Fi(t) =
−∂V(r1(t), r2(t), ..., rN (t))

∂ri(t)
(4)

where r is a vector that designates the location of a particle, and thus r1(t) is the location of particle
(or atom, in this case) 1 at time t. V(r1(t), r2(t), ..., rN (t)) is the potential energy for the entire
system at time t, and is based on the position of all of the atoms, as described in the previous
section. Taking the partial derivative of the potential energy of the system with respect to a single
atom in the system, atom i, allows us to the force that is imparted on the atom i.

Thus, assuming that we can calculate the potential energy of all of the atom interactions in a
system, we can use Equation 4 to determine the Force that each atom feels, and we then can use
the following simplified equations of Newton’s Laws of Motion (Equations 1 and 2):

vi(t+ δt/2) = vi(t− δt/2) +
Fi(t)
mi

δt (5)

ri(t+ δt) = ri(t) + vi(t+ δt/2)δt (6)

to determine the location and velocity of each atom of a simulation at some moment δt in the
future. In the case of atom motion, we want to be sure that we perform calculations often enough
to account for any displacement of any atom that might have occurred. Because individual atoms
move very quickly, they can change their position every few femto seconds, and so δt in this example
must be on the order of femtoseconds. In fact, most MD simulations set δt to 1 or 2 femtoseconds.

The idea of Molecular Dynamics is thus quite elegant: (1) compute the potential energy between all
interacting atoms in a system using the Lennard-Jones and other potentials, (2) from the potential
energy, Calculate the force that each atom feels, (3) using the force and a small δt, use Newton’s
equations of motion to determine the position and velocity of each atom in the system, (4) repeat.

Molecular Dynamics thus performs the above calculations for many time steps (most often billions
of time steps, each of which is a few femto-seconds in length), during each of which the position
and velocity of each atom are calculated. Successive positions of each atom in a simulation can be
sequentially concatenated to produce the motion of each atom, and if all of the motions of all of the
atoms are calculated, then the motion of the entire bimolecular structure can thus be determined.

Molecular Dynamics IS the use of the above equations to determine the location and
velocity of the atoms in a biological system.
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