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Abstract
This work introduces a new maximum entropy language model
that decomposes the model parameters into a low rank com-
ponent that learns regularities in the training data and a sparse
component that learns exceptions (e.g. multiword expressions).
The low rank component corresponds to a continuous-space
language model. This model generalizes the standard `1-
regularized maximum entropy model, and has an efficient accel-
erated first-order training algorithm. In conversational speech
language modeling experiments, we see perplexity reductions
of 2-5%.
Index Terms: language modeling, maximum entropy, sparse
plus low rank decomposition

1. Introduction
While n-gram language modeling has been used with much suc-
cess in applications where large training sets are available, there
remains a need to better model small, targeted domains where
limited data is available. We recently introduced a tensor-based
“low rank language model” (LRLM) that outperforms baseline
models when training data is limited [1]. A disadvantage of
the LRLM is that the non-convex objective complicates train-
ing. The model proposed in this paper introduces a low rank
weight component into the maximum entropy modeling frame-
work, side-stepping the limitations of the LRLM and leverag-
ing advantages of the maximum entropy approach. Our new
model subsumes a large class of `1-regularized maximum en-
tropy language models and can be interpreted as incorporating a
discriminatively-trained continuous-space language model into
the maximum entropy setting.

2. Sparse and Low Rank Language Models
2.1. The Model

The standard maximum entropy language model [2] has the
form

p(w|h) =
exp

`
aT f(w, h)

´P
w′ exp (aT f(w′, h))

, (1)

where a ∈ Rd are the parameters and f(w, h) ∈ Rd is the
feature vector extracted from word w and history h. We gen-
eralize the model with two key changes: i) the vector is recast
as a feature matrix with a corresponding weight matrix, and ii)
the weight matrix is decomposed into the sum of two matrices
that each have special structure. A weight matrix parameterized
maximum entropy model can be written as:

p(w|h) =
exp

`
ψ(w)TAφ(h)

´P
w′ exp (ψ(w′)TAφ(h))

. (2)

Here ψ(w) ∈ Rdψ is the vector of features of w individually
and φ(h) ∈ Rdφ are the features of h. In this caseA ∈ Rdψ×dφ

is a parameter matrix. This can be linked to the notation of
Eqn. 1 by noting thatψ(w)TAφ(h) = 〈A,ψ(w)φ(h)T 〉, where
〈·, ·〉 denotes a matrix inner-product (element-wise multiply and
sum). If one denotes the vectorization of A with a and the
vectorization of feature matrix ψ(w)φ(h)T with f(w, h), we
recover the form in Eqn. 1. Any maximum entropy language
model whose features are products of features on words and
histories can be written in the form of Eqn. 2. In particular,
standard n-gram features take this form, where ψ(w) and φ(h)
are one-hot-encodings of the words and histories. In this paper
we focus on these standard n-gram features.

Empirically we observe that the weight matrices A learned
for models of the form Eqn. 2 contain two qualitatively different
kinds of information. First, there are relatively dense regions
of the matrix that model the sequential behavior of high fre-
quency words. Because only a small fraction of the words are
frequent, this information can be well modeled by a low rank
matrix. Second, there are large sparse regions of the matrix,
where only a handful of the elements deviate significantly from
zero - these correspond to n-grams whose individual words in-
frequently appear outside of a small handful of n-grams (e.g.
“san francisco”). This information alone can be well modeled
by a sparse matrix. Fig. 1 illustrates this result, visualizing the
estimated weights in the 200 × 200 leading submatrix of a bi-
gram weight matrix trained on 100K tokens with a 5K vocab-
ulary. The complete matrix can be decomposed accurately into
the sum of a sparse matrix (S, upper) and low rank matrix (L,
lower). We show in this paper that language modeling perfor-
mance can be improved by using a more general model able to
efficiently capture both types of structure inherent in the data.

2.1.1. Sparse Component

The model of Eqn. 1 is often trained with `1 regularization ap-
plied to a. Not only is it well-known that this particular penalty
leads to sparse solutions, but it has also been found to be an em-
pirically desirable criterion to minimize [3]. An entry-wise `1
penalty can be applied to a weight matrix S to the same effect.
In standard models, the “sparse” component is the only com-
ponent, and is thus tasked with modeling all of the sequential
behavior. In our model, its burden is reduced (e.g. it does not
need to model n-grams easily explained by syntax), freeing it
to focus on n-grams that do not fall into standard patterns.

2.1.2. Low Rank Component

Restricting ourselves to a sparse solution ignores an important
attribute of language: that similarities exist between words and
between histories in the data. A sparse model has no way to
exploit similarities that might exist (e.g. between the words
“bicycle” and “bike”). Viewed in the form of Eqn. 1, this is
inevitable: features are values at arbitrary positions in a vector.
Viewed in the form of Eqn. 2, we see similarities between two
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Figure 1: The weight matrix A can be naturally decomposed
into sparse (top) and low rank (bottom) matrices.

words can be expressed by similarity between the correspond-
ing rows, and similarities between histories can be viewed as
similarities between the corresponding columns. More gener-
ally, sets of rows (or columns) may live in subspaces, e.g. one
might envision a “space” of adjectives, or a “space” of nouns.
This property corresponds to a low rank solution; i.e. finding a
low rank weight matrix A.

Empirically, a low rank component typically appears in the
solution without any encouragement from the model or train-
ing. By facilitating the existence of a low-rank component, we
can improve the modeling performance. For example, the co-
occurrence statistics for a word α that has been observed 50
times may be sufficiently similar to a set of words β that have
been observed hundreds or thousands of times for α’s weights
to be pushed into β’s subspace of weights; in effect, this “fills
in” missing entries from α’s weight rows and columns.1

The idea of learning and exploiting similarities between ob-
jects (e.g. words and histories) is a common theme in the liter-
ature on learning shared representations [5] and is used by lan-
guage models with continuous representations of words [6, 7].
We show here that a maximum entropy model with a low rank
weight matrix A is in fact a continuous-space language model.
To see this, note thatA ∈ Rdψ×dφ with rankR ≤ min(dψ, dφ)
has a singular value decomposition A = UΣV T , with diago-
nal matrix of singular values Σ ∈ RR×R, left singular vectors
U ∈ Rdψ×R and right singular vectors V ∈ Rdφ×R. Substitut-
ing the structure of A into Eqn. 2, we get

p(w|h) =
1

Z(h)
exp

“
ψ(w)TUΣV Tφ(h)

”
(3)

=
1

Z(h)
exp

““
UTψ(w)

”
Σ
“
V Tφ(h)

””
(4)

=
1

Z(h)
exp

“
ψ̃(w)TΣφ̃(h)

”
. (5)

Here ψ̃(w) = UTψ(w) denotes a continuous, low-dimensional
representation of w, φ̃(w) = V Tφ(h) denotes a continuous,

1This basic idea is extensively exploited in low-rank approaches to
collaborative filtering [4].

low-dimensional representation of h, and Z(h) is the normal-
izing factor. The probability of a word following a history is
proportional to the weighted inner-product ψ̃(w)TΣφ̃(h) in the
low-dimensional space. The dimension of the representation
is equal to R, the rank; lower rank solutions for A correspond
to embeddings of words in lower dimensional spaces. Simi-
lar words will have continuous representations that are close to
each other in the low-dimensional space; the same is true for
similar histories. Crucially, the low dimensional representation
of a word can (and should) be different in the history position
h than in the predictive position w. In Section 2.2 we present
an algorithm that discriminatively learns a low rank matrix, and
thus discriminatively learns low dimensional continuous repre-
sentations of words and histories.

When A is low rank, the model of Eqn. 2 bears some simi-
larity to Mnih and Hinton’s “log-bilinear” language model [8],
which estimates a matrix that is analogous to our U in Eqn.
4, and matrices analogous to V for each word in a fixed history
window. In doing so, they find continuous low-dimensional rep-
resentations of words and history words. A few advantages of
our approach are that 1) we are guaranteed to converge to a
globally optimal solution, 2) we support arbitrary feature func-
tions of words and histories, and 3) the dimension of the hidden
representation is learned, rather than pre-specified.

2.1.3. Sparse and Low Rank Combination

It is not plausible that all regularities in the data can be learned
from a finite training set. For example, if a word is observed
only a handful of times, we may simply not know enough about
it to know what subspace of words it lives in. Further, some
n-grams (e.g. proper nouns, idioms, etc.) do not fit into any
regular pattern. A low rank matrix cannot capture all of these
exceptions. Thus we propose a hybrid model, where the weight
matrix A is the sum of two individual components: a low rank
matrixL and a sparse matrix S. The low rank component is free
to model all of the regularities present in the data (a result of the
inherent structure present in language). The sparse component
learns the rest - the exceptions to the rule. Our proposed sparse
plus low rank language model (SLR-LM) thus has the following
form:

p(w|h) =
exp

`
ψ(w)T (S + L)φ(h)

´P
w′ exp (ψ(w′)T (S + L)φ(h))

. (6)

As a byproduct, the SLR-LM separates n-grams into two
qualitatively different sets: the regular low rank n-grams which
are well predicted by the regular rules, and the sparse n-grams
that are not. There are auxiliary benefits to this decomposition.
For example, Min et al. [9] show that applying a sparse plus low
rank decomposition directly to a word-document matrix can be
used to extract document keywords; the n-grams in our sparse
matrix could be used similarly.

2.2. Training Algorithm

To train the SLR-LM of Eqn. 6 we solve the following non-
smooth convex optimization problem:

min
S,L

γ0‖L‖∗ + γ1‖S‖1 + γ2‖S + L‖2F − L(X ;S,L). (7)

The entry-wise `1 norm, ‖S‖1, promotes sparsity in our S vari-
ables. We penalize L’s nuclear norm,2 ‖L‖∗, which is known

2The nuclear norm of X is the sum of its singular values; i.e. the `1
norm applied to the vector of singular values.



Algorithm 1 TRAINSLR-LM()

1: S ← L← S′ ← L′ = 0; t← t′ ← 1
2: while not converged do
3: mL← L′ + ((t′ − 1)/t)(L− L′)
4: mS ← S′ + ((t′ − 1)/t)(S − S′)
5: mA← mL+mS
6: Pick τS
7: gS ← mS + (1/τS)∇mA(L − γ2‖mA‖2F )
8: pS ← Sγ1/τS (gS)
9: S′ ← S and S ← pS

10: sA← mL+ pS
11: Pick τL
12: gL← mL+ (1/τL)∇sA(L − γ2‖sA‖2F )
13: [U,Σ, V ]← SVD(gL)
14: pL = USγ0/τL(Σ)V T

15: L′ ← L and L← pL
16: t′ ← t and t← (1 +

√
1 + 4t2)/2

17: end while

to encourage low rank solutions [10, 11]. The Frobenius norm
permits standard `2-norm regularization; it is included for com-
pleteness but is not used in experiments here. L denotes the
average log-likelihood, which has the familiar empirical-minus-
model expectation form for its gradient as a function of A:

∇AL = Ep̂(w,h)[ψ(w)φ(h)T ]−EpA(w,h)[ψ(w)φ(h)T ]. (8)

In Alg. 1 we introduce an iterative algorithm for solving the
above convex optimization problem. The basic structure of each
iteration is to make four updates: 1) a gradient step on S, 2) an
entry-wise threshold step to shrink the entries of S, 3) a gradient
step on L, and 4) a singular-value threshold step on L. Both
thresholding steps make use of the soft-thresholding operator:

Sµ(X) = sgn(X) ◦max(0, |X| − µ) (9)

where all operations are entry-wise; in particular, ◦ denotes
entry-wise multiplication. Our algorithm is a block-coordinate
variant of the accelerated proximal gradient descent algorithm
introduced by Toh and Yun in [12], modified to alternate be-
tween the `1 and ‖·‖∗ regularized terms. Compared to standard
maximum entropy language model training, the SVD increases
the computational cost, adding a O(dψdφRk) term to the per-
iteration complexity, where Rk is the rank of L at iteration k.
To speed up training, we employ many of the tricks proposed in
[12], including computing partial SVDs (with PROPACK [13])
and using a continuation technique that gradually decreases the
γ0 and γ1 weights from a large initial value to their intended
target values. The τS and τL parameters in Alg. 1 are picked ac-
cording to a line search analogous to Toh and Yun’s. All training
computation can be phrased as matrix operations, permitting us
to locally parallelize computation over many cores.

3. Language Modeling Experiments
3.1. Experimental details

All of our experiments use conversational telephone conversa-
tions from the Fisher corpus [14]. Each conversation in the cor-
pus is labeled by topic; we draw data from eight of the largest
topics (see Tab. 1), which had at least 350K word tokens. For
each topic, we split the data (at the granularity of conversation)
into training, development and test sets, at a 60/20/20 ratio. To
avoid conflating the effects of topic and training set size, after

Topic # Test Tokens Test OOV Description
ENG01 158K 3.5% Professional sports
ENG02 157K 4.4% Pets
ENG03 130K 2.9% Life partners
ENG04 151K 3.2% Minimum wage
ENG05 131K 3.9% Comedy
ENG24 63K 3.6% September 11
ENG30 76K 3.8% Family
ENG37 81K 3.3% Reality TV

Table 1: Topics used from the Fisher corpus.

25K 100K 200K
Topic SLR ME SLR ME SLR ME

ENG01 109.4 109.9 83.0 86.5 76.7 78.8
ENG02 115.1 116.6 86.6 91.9 79.5 83.1
ENG03 116.7 119.6 88.0 92.6 80.9 83.7
ENG04 109.2 110.4 82.3 85.2 75.4 77.3
ENG05 110.2 111.3 83.4 86.4 75.4 78.4
ENG24 125.7 126.8 93.6 98.0 85.7 88.6
ENG30 114.9 116.8 86.5 90.6 79.5 83.4
ENG37 112.5 114.0 84.1 88.1 77.8 80.9

Table 2: Test set perplexity by topic and training set size.

basic text normalization we subsampled the training data (by
sentence) to create three training subsets per topic, with 200K,
100K and 25K training tokens, respectively. Due to limited
training data, we restrict our vocabulary to the most frequency
5K word types; all out-of-vocabulary tokens are mapped to a
dedicated OOV symbol.

For each topic and training set size, we train a bigram lan-
guage model on the training set, use the development data to
tune the regularization weights γ0 and γ1 (we fixed γ2 = 0),
and evaluate on the test set. We use as our baseline a bigram
“standard” `1 regularized maximum entropy (ME) language
model, trained as an SLR-LM with γ0 chosen such that the low
rank matrix is zero.

3.2. Results and Discussion

The results are presented in Table 2. As expected, in all cases
the optimal SLR-LM has a lower perplexity than the baseline

Figure 2: Percent perplexity reduction over baseline by topic
and training set size.



History Word h Nearest Neighbors
would could, didn’t, can’t, don’t, should

but well, mean, because, guess, think
of from, for, at, in, make

Prediction Word x Nearest Neighbors
would can, did, don’t, didn’t, should, could

but so, because, now, for, as
know keep, think, want, get, talk

one two, four, three, ten, five
dog cat, thing, ones, animal, baby

Table 3: Words, histories, and their nearest neighbors in the
continuous-space embeddings induced by the low rank compo-
nent from the 200K ENG02 set.

`1 regularized model. Fig. 2, which plots the percent perplexity
reduction over baseline by topic and training set size, makes it
easier to see the overall trends. In particular, although gains are
observed at all configurations, the biggest gains are achieved on
the 100K data set size. Presumably, when there is very little
training data (25K), it is difficult to learn the patterns in the data
simply because too few instances are observed. In other words,
we observe a rough skeleton of the true matrix, with too many
holes to be accurately filled by the low rank component. On
the other hand, as the amount of training data grows, there be-
come enough examples that the patterns can be captured by the
aggregation of “exceptions”; that is, the patterns in the matrix
become dense enough that there are few holes left for the low
rank component to fill. Again, the SLR-LM still outperforms
the standard ME-LM in these cases, just by a smaller margin.

We looked at the high and low weight entries (n-grams)
learned for the sparse and low rank components for a model
trained on the topic “minimum wage.” The sparse component,
which models the exceptions in the data, typically learned com-
mon noun phrases, including locations (“new york”, “united
states”) and topic-related phrases (“social security”, “grocery
store”). Although nothing prevents the sparse component from
having large negative weight entries to revise the probabili-
ties of n-grams downward, empirically we find this behavior
very rare. The low rank component assigned high weights to
n-grams that are syntactically or semantically plausible (“you
know,” “I think,” “I don’t”), and low weights to ones that are
not (“the a,” “my that”).

If the SLR-LM is indeed learning a low-dimensional con-
tinuous representation, words (or histories) that function sim-
ilarly should be mapped close to each other in the continuous
representation. Using a model trained with 200K tokens on the
topic of “pets,” we list in Table 3 several words and histories
with their nearest neighbors in the low dimension space. Note
that sometimes a word’s neighbors are similar in either position
(e.g. “would”), but they need not be (e.g. “but”). As expected,
natural clusters form, e.g. numbers.

4. Conclusions
In this paper we introduce a new sparse plus low rank maxi-
mum entropy language model that generalizes a large class of
`1 regularized models, and an efficient algorithm to train it.
The SLR-LM automatically performs natural and flexible “soft-
tying” of parameters between similar words (and histories) that
improves generalization, and can be viewed as a continuous lan-
guage model discriminatively trained in the maximum entropy
framework. In bigram language modeling experiments on con-

versational speech, with varying topic and training set sizes, we
observe consistent 2-5% reductions in perplexity.

To facilitate comparison, we focused on basic n-gram fea-
tures. However, the SLR-LM supports arbitrary feature func-
tions on words and on histories. Through feature functions one
can naturally model higher order n-grams (e.g. by letting φ(h)
map to a one-hot encoding of (n-1)-grams). Richer feature sets
(e.g. morphological features, part of speech tags, semantic fea-
tures, etc.) would provide more traction for the low rank com-
ponent to flexibly pool information between words and histo-
ries. Thus, we anticipate that better feature sets will lead to even
larger performance gains over the baseline. Motivated by previ-
ous results [1, 2], we also expect that interpolating the SLR-LM
with a standard smoothed n-gram model would yield further
improvements.
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