
Parallel Training of Deep Stacking Networks

Li Deng
1
, Brian Hutchinson

2
, and Dong Yu

1

1
Microsoft Research, Redmond, WA, USA

2
University of Washington, Seattle, WA, USA

{deng,dongyu}@microsoft.com; brianhutchinson@ee.washington.edu

Abstract

The Deep Stacking Network (DSN) is a special type of deep

architecture developed to enable and benefit from parallel

learning of its model parameters on large CPU clusters. As a
prospective key component of future speech recognizers, the

architectural design of the DSN and its parallel training endow

the DSN with scalability over a vast amount of training data. In

this paper, we present our first parallel implementation of the
DSN training algorithm. Particularly, we show the tradeoff

between the time/memory saving via training parallelism and the

associated cost arising from inter-CPU communication. Further,

in phone classification experiments, we demonstrate a
significantly lowered error rate using parallel full-batch training

distributed over a CPU cluster, compared with sequential mini-

batch training implemented in a single CPU machine under

otherwise identical experimental conditions and as exploited

prior to the work reported in this paper.

Index Terms: parallel and distributed computing, deep stacking

networks, full-batch training, phone classification

1. Introduction

Since the birth of deep learning around 2006 [10][2][14], deep

models with various types have recently been developed and

successfully evaluated for a number of speech processing

applications [3][4][7][11][15]. Among these models, the Deep
Stacking Network (DSN), presented recently in [5][6], is

particularly attractive due to the potential of using parallel

computing for learning its weights. Other popular deep models,

e.g., deep belief nets and deep neural nets [10][4], have not
benefitted from parallel training capability and scalability,

making it difficult for large scale applications.

The earlier papers introduced the DSN, outlined the

algorithms for learning its weight parameters emphasizing its
parallel learning capability, and presented experimental evidence

for its effectiveness in speech and image classification tasks

[5][6][17]. In this paper, we build upon and extend the earlier

work by describing our new parallel implementation of the DSN
learning algorithm. In particular, we show how the gradient is

computed in CPU clusters and what the tradeoff looks like

between the gain derived from the parallelism and the cost due to

inter-CPU communication.
Unlike most other deep models, the implementation of

learning algorithms for the DSN does not require GPU units

even for large datasets. The importance of our parallel

implementation lies in the scalability to vast amounts of training
data. This capability is a key for the potential use of the DSN as

a component of future speech recognizers based on deep models.

Parallel implementation for DSN learning makes it possible to

use a full-batch, gradient descent training procedure. The

classification results presented in earlier papers [5][6] were
limited to mini-batch training due to the memory constraint

within a single CPU. The new classification results shown in this

paper further confirm the effectiveness of the DSN and its

learning algorithm. Specifically, we demonstrate that the full-
batch training, enabled by parallel learning distributed over CPU

clusters, gives substantially fewer classification errors than the

corresponding mini-batch training under otherwise identical

experimental conditions.

2. Deep Stacking Networks

 In this and the next sections, we provide an overview of the

DSN architecture and its learning which are relevant to the

implementation of parallel training as the main theme of this

paper. The philosophy of DSN’s architecture design rests in the
concept of stacking, as proposed originally in [16], where simple

blocks of functions or classifiers are composed first and then

they are “stacked” on top of each other so as to learn more

complex functions or classifiers. Following this philosophy, [5]
presented the basic form of the DSN architecture that consists of

many stacking blocks, each of which takes a simplified form of

shallow multilayer perceptron using convex optimization for

learning the perceptron weights.
 Fig. 1 gives an example of a three-block DSN, each consisting

of three layers and each illustrated with a separate color. Two

common and equivalent ways of showing the DSN architecture

are depicted here, where “stacking” is accomplished by
concatenating the immediately previous block’s output

prediction vector with the original input vector to form the new

“input” vector in the new block. (Other types of stacking are

possible, e.g. [3], and will not be covered in this paper.) The
hidden layers in all blocks have the same sigmoid nonlinearity.

Prediction and input layers in all blocks are linear. The DSN

weight parameters and in each block are learned efficiently

from training data, which we will describe in the next and the

following sections from the algorithmic and implementational

perspectives, respectively.

3. Training in Deep Stacking Networks

 The linearity of the output layer in each block of the DSN is a

key design decision. Such linearity enables highly efficient,
parallelizable, and closed-form estimation for the output network

weight matrices given the hidden units’ activities, denoted

by . Due to the closed-form constraints between the input

weight matrix and the output weight matrix , the former can
also be elegantly estimated in an efficient, parallelizable, batch-

mode manner.

Fig. 1: Two common and equivalent ways of illustrating a typical DSN

architecture used in this and recent studies. Hidden layers in all blocks

are sigmoid nonlinear. Prediction and input layers are linear. Three

blocks are shown here, each with a distinct color.

 Denote the training vectors by [], in which

each vector is denoted by []

 where is

the dimension of the input vector, which is a function of the

block, and is the total number of training samples. Denote by

the number of hidden units and by the dimension of the output

vector. Then, the output of a DSN block is
 where

 (
) is the hidden-layer output vector, is an

weight matrix at the upper layer of a block. is a weight

matrix at the lower layer of a block, and () is a sigmoid

function. Bias terms are implicitly represented in the above

formulation if and are augmented with ones, which we

adopt in this work.

 Given target vectors in the full training set with a total of N

samples, [] , where each vector is

[]

, the parameters and are learned so as to

minimize the average of the total square error below:

 ‖ ‖
 [()()] (1)

where [] and subscript F denotes Frobenius

norm. Note that once the lower layer weights are fixed (e.g.,

by random numbers or by a fixed restricted Boltzmann

machine’s weights [5][6]), the hidden layer values

[] are also determined uniquely. Consequently,

the upper layer weights can be determined by setting the

gradient

 [() ()

]

 ()

(2)

to zero, leading to the closed-form solution

 () (3)

 When L2 regularization is applied in learning , it can be

easily shown that the learning formula becomes

 () (4)

 The weight matrix in each module of the DSN can be

further learned using batch-mode gradient descent [17]. The

computation of the error gradient makes use of Eq. (4) and

proceeds by

 [()()

]

 [([()])([()])]

→

 [()]

 [()]

 [(()[()]) () [()]]

 [() [()() ()]]

(5)

where () is pseudo-inverse of and symbol
 denotes component-wise multiplication. Note the approximation

used in deriving the gradient above, where we assume that the

regularization parameter is sufficiently small. Otherwise, the
gradient would not have the simple, closed form of (5) due to

lack of cancellation of a number of terms, and parallel

computation of the gradient would become more complicated.

The way to initialize in gradient descent as required for
stacking each block of DSN is not trivial; four methods were

discussed in [6].

4. Parallel Computing for Weight Training

 In this section, we describe our parallel implementation of the

DSN weight learning algorithm. Specifically, we describe how
the gradient of Eq. (5), denoted by G in Fig. 2, involving all

training data is computed over a CPU cluster.

 In Fig. 2 we show data flow and the computation procedure in

evaluating the gradient in Eq. (5). Each of the matrices in green
is computed in parallel and its result is stored to disk. The

parallelization is accomplished by parallelizing the matrix

multiplies, having split each matrix in the product along the inner

(shared) dimension (of size N). The jobs in orange color are
accumulators: they simply sum the individual green matrices.

Because the summing can begin before all of the individual

matrices have been computed, the accumlators introduce

minimal delay into the parallel computing pipeline. The job in
red color requires synchronizing over the parallel batches

distributed over the CPU cluster; i.e. it must wait for all of its

dependencies. The quantities in blue color are recomputed as
needed instead of being distributed, as this reduces network and

disk load and optimizes overall speed.

 While a main motivation for parallel implementation of the

DSN learning is to scale beyond the memory limits of a single
machine, we also examine the effect of parallelization on overall

computation speed. There is cost associated with parallel

computation arising from the inter-process communication.

Because our implementation uses network disk to store and load
cached variables, this cost is non-trivial. In Fig. 3, we show the

measured wall-clock run-time, over three repeated single

instances at different times of a day, as a function of the total

number of distributed processors. The task is to compute the

gradient and to evaluate the training objective on the training

data consisting of a total of 1.12 million training samples. As can

be observed, the lowest total computation time is achieved when

distributed over between four to ten machines. This gives an

average speed-up of approximately three times over the single
processor case. When more than ten parallel processors are used,

we observe a rise in the total computation time, as a result of the

additional disk access costs and of the inter-process

communication.

Fig. 2: Parallel computation for the gradient, G, of Eq. (5) in

implementing the DSN learning algorithm. Specifically, four quantities in

green are computed in parallel over a CPU cluster.

Fig. 3: Run time of learning DSN as a function of the total number of

distributed processors. Data from three independent runs at different

times of a day are shown.

5. State and Phone Classification

Experiments

Prior to the work reported in this paper, gradient-descent

learning of the DSN’s weights was carried out in a mini-batch

mode in a single processor [5][6]. This was mainly due to the

memory limitation of the processor used in the experiments.

Parallel implementation of the DSN’s weight learning enables

distributing the training data as well as computation over
multiple processors and thus supports the training in a full-batch

mode, whose results are reported here.

5.1 TIMIT experiments
Detailed experimental setup and procedure for the TIMIT

frame-level state and segment-level phone classification tasks

have been described in [5][6] and will not be repeated here. Here

we focus on our new experimental results. Table 1 presents the
frame-level state classification and segment-level phone

classification error rates for a wide sweep of the mini-batch sizes

(i.e. the number of training samples) used in each weight update

of the gradient descent algorithm for learning weight matrix

according to Eq. (5). The results with full-batch fine-tuning are

shown at the bottom row, and those with no fine-tuning shown at

the top row. In these experiments, the DSN uses 3000 hidden
units in each block and has a total of five blocks. Note that after

each update, the weight matrix U is estimated always with the

full-batch data according to Eq. (4) after using the new W to

compute H. Also, a sufficient number of iterations in gradient
descent are carried out to reach convergence as judged by the

TIMIT development set behavior. L-BFGS is used to update W
[8] so that we do not need to tune the learning rate. The use of

manually tuned learning rates and a FISTA procedure [1] for
training is found to give similar results (not shown here).

The frame-level state classification results in the middle

column of Table 1 are obtained using the straightforward DSN,

where the total number of state classes is 183. When post-

processing with dynamic programming [4][13] is applied to the

three states for each phone and the 183 classes are merged into

39, we obtain the segment-level phone classification results as

shown in the final column of Table 1.

Table 1: State (frame-level) and phone (segment-level) classification

error rates for the TIMIT core test set as a function of the mini-batch size

in the gradient-based learning algorithm for training each DSN module.

MiniBatch Size State Err Rate Phone Err Rate

No fine tuning 50.50% 30.10%

1,000 49.30% 29.66%

2,000 48.55% 28.50%

5,000 47.75% 27.88%

10,000 46.25% 26.20%

20,000 45.30% 25.25%

50,000 44.99% 24.90%

100,000 44.60% 24.77%

200,000 44.29% 24.10%

250,000 43.98% 23.60%

1,124,589 (full) 42.70% 22.20%

It is clear from Table 1 that the error rates decrease strictly as
the mini-batch size increases. Full-batch training gives a

significantly lower error rate than all sizes of mini-batch training

shown. Note the full-batch training is made possible via the

parallel and distributed training over a CPU cluster as described
in Section 4. Using a single CPU machine (with 48G memory) to

implement the DSN’s fine tuning, we were limited by the

maximal mini-batch size of 250k training samples (each sample

with the dimensionality of 429), beyond which all memory in the
machine became exhausted.

5.2 WSJ0 experiments

 To verify the effectiveness of the full-batch training, we also
use the 5k-WSJ0 database [12] to run frame-level phone

classification experiments. 5k-WSJ0 has 5000 words in the

vocabulary. The training material from the SI84 set in the

database contains 7077 utterances (15.3 hours of speech data)
from 84 speakers. They are separated into a 6877-utterance

training set and a 200-utterance cross validation set. The test set

consists of the Nov92 evaluation data with 330 utterances from

eight speakers [9]. For the short-time spectral representation of
the speech signal we use the same MFCCs and their deltas as in

700

1200

1700

2200

1 2 3 4 5 6 7 8 9 10 11 12

W
al

l-
cl

o
ck

 t
im

e
(s

e
cs

)

Number of distributed CPUs

the TIMIT experiments; 11 frames are grouped as a single

feature vector with 429 elements and are input to the DSN
classifier. With the ten millisecond frame rate, the training set

has a total of 5,232,244 frames as training samples, substantially

larger than TIMIT. Further, unlike the TIMIT database where

phone boundaries in training, development, and test sets are
provided, no phone boundaries are given in WSJ0. In this work,

we generate the phone labels and their boundaries in the data

from the forced alignments using a tied-state cross-word tri-

phone Gaussian-mixture-HMM speech recognizer. These phone
labels, with a total of 40 in size, together with their boundaries

provide one-to-one mapping between each speech frame and its

phone label as the target for training and evaluating the DSN.

 In Table 2, we show again the effectiveness of the full-batch
training enabled by parallel implementation in training the DSN,

where the hidden layer contains 3000 units in each block and a

total of five blocks are constructed for the DSN. The task is

frame-level phone classification, without any post-processing as

required for segment-level phone classification carried out for

TIMIT. Use of no segment constraint creates more errors than

when constraints are imposed via post-processing as done for

TIMIT. But the number of classes on WSJ0 is relatively small
(40 of them), phones and words in WSJ0 are reasonably clearly

enunciated, and there are about five times more training samples

in WSJ0 than in TIMIT. These account for similar phone

classification error rates between TIMIT and WSJ0.

Table 2: Frame-level phone classification error rate for the WSJ0

test set as a function of the mini-batch size in the gradient-based learning

algorithm for training each DSN module.

Mini-Batch Size Phone Err Rate

10,000 29.95%

50,000 27.77%

100,000 26.10%

250,000 24.50%

5,232,244 (full batch) 20.99%

6. Discussions and Conclusion

In this paper, we report our first parallel implementation of

the DSN learning algorithm. We explore the tradeoff between

the multi-processor speed-up and inter-CPU communication cost
by examining the run time required to complete a fixed DSN

learning task as a function of the number of the distributed

processors. The parallel nature of DSN learning presented in this

paper is analogous to that in the batch-based EM learning
algorithm prevailing in the current HMM speech recognition

systems. This virtue is conspicuously missing in the recent deep

neural network architectures [4].

 In phone classification experiments using both TIMIT and
WSJ0 databases, we demonstrate a significantly lowered error

rate achieved by DSN with full-batch training, which would be

impossible without parallel training, than with the corresponding

mini-batch training carried out in earlier work [5][6]. This result
forms a stark contrast to fine-tuning deep neural networks by

back-propagation [4][10], where the error rate was found to

saturate quickly (i.e., to stop decreasing) as the mini-batch size

increases. This may account for why stochastic or mini-batch
gradient descent has been popular for learning the deep neural

networks; i.e., full-batch training would not lower the error rate

but instead waste computing time using the same number of

network weight updates.

The availability of parallel training and the effectiveness of

batch-mode learning verified in this work have opened the door
for a wide range of DSN applications to large-scale speech and

related information processing in GPU-free computation

environments. We are currently pursing applications of DSN in

speech recognition, speech understanding, and information
retrieval while refining and improving its architecture.

7. References

[1] A. Beck and M. Teboulle. “Gradient-based methods with

application to signal recovery problems,” In D. Palomar and
Y. Eldar, editors, Convex Optimization in Signal Processing

and Communications. Cambridge, University Press, 2010.

[2] Y. Bengio. “Learning deep architectures for AI,”

Foundations and Trends in Machine Learning, vol. 2, no. 1,
pp. 1–127, 2009.

[3] B. Hutchinson, L. Deng, and D. Yu, “A deep architecture

with bilinear modeling of hidden representations:

Applications to phonetic recognition,” Proc. ICASSP 2012.
[4] G.E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-

dependent pretrained deep neural networks for large

vocabulary speech recognition,” IEEE Trans. Audio,

Speech, and Lang. Proc. Jan. 2012.
[5] L. Deng and D. Yu. “Deep Convex Network: A scalable

architecture for deep learning,” In Proc. Interspeech, 2011.

[6] L. Deng, D. Yu, and J. Platt. “Scalable stacking and

learning for building deep architectures,” In Proc. ICASSP,
2012.

[7] L. Deng, M. Seltzer, D. Yu, A. Acero, A. Mohamed, and G.

Hinton. “Binary coding of speech spectrograms using a

deep auto-encoder,” In Proc. Interspeech, September 2010.
[8] D. Liu and J. Nocedal. “On the limited memory (BFGS)

method for large scale optimization,” J. Mathematical

Programming, Vol. 45, No.3, 503-528, 1989.

[9] J. Godfrey and E. Holliman, “Switchboard-1 Release 2,”
Linguistic Data Consortium, Philadelphia, 1997.

[10] G. Hinton and R. Salakhutdinov. “Reducing the

dimensionality of data with neural networks,” Science, vol.

313, 504–507, 2006.
[11] A. Mohamed, G. E. Dahl, and G. E. Hinton, “Acoustic

modeling using deep belief networks,” IEEE Trans. on

Audio, Speech, and Lang. Proc. Jan. 2012.

[12] D. B. Paul and J. M. Baker, “The design for the Wall Street
Journal based CSR corpus,” in Proc. Int. Conf. Spoken

Lang. Processing, 1992.

[13] S. Renals, N. Morgan, H. Bourlard, M. Cohen, and H.

Franco. “Connectionist Probability Estimators in HMM

Speech Recognition,” IEEE Trans. Speech and Audio Proc.,

January 1994.

[14] R. Salakhutdinov and G. Hinton. Deep Boltzmann

machines. In Proc. AISTATS, 2009.
[15] G. Tur, L. Deng, D. Hakkani-Tür, and X. He. “Towards

deep understanding: Deep convex networks for semantic

utterance classification,” In Proc. ICASSP, 2012.

[16] D. Wolpert. “Stacked generalization,” In Neural Networks,
vol. 5(2), pp 241-259, 1992.

[17] D. Yu, and L. Deng. “Accelerated parallelizable neural

networks learning algorithms for speech recognition,” In
Proc. Interspeech, 2011.

