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Abstract 

The Deep Stacking Network (DSN) is a special type of deep 

architecture developed to enable and benefit from parallel 

learning of its model parameters on large CPU clusters. As a 
prospective key component of future speech recognizers, the 

architectural design of the DSN and its parallel training endow 

the DSN with scalability over a vast amount of training data. In 

this paper, we present our first parallel implementation of the 
DSN training algorithm. Particularly, we show the tradeoff 

between the time/memory saving via training parallelism and the 

associated cost arising from inter-CPU communication. Further, 

in phone classification experiments, we demonstrate a 
significantly lowered error rate using parallel full-batch training 

distributed over a CPU cluster, compared with sequential mini-

batch training implemented in a single CPU machine under 

otherwise identical experimental conditions and as exploited 

prior to the work reported in this paper. 

 

Index Terms: parallel and distributed computing, deep stacking 

networks, full-batch training, phone classification  

1. Introduction 

Since the birth of deep learning around 2006 [10][2][14], deep 

models with various types have recently been developed and 

successfully evaluated for a number of speech processing 

applications [3][4][7][11][15]. Among these models, the Deep 
Stacking Network (DSN), presented recently in [5][6], is 

particularly attractive due to the potential of using parallel 

computing for learning its weights. Other popular deep models, 

e.g., deep belief nets and deep neural nets [10][4], have not 
benefitted from parallel training capability and scalability, 

making it difficult for large scale applications.  

The earlier papers introduced the DSN, outlined the 

algorithms for learning its weight parameters emphasizing its 
parallel learning capability, and presented experimental evidence 

for its effectiveness in speech and image classification tasks 

[5][6][17]. In this paper, we build upon and extend the earlier 

work by describing our new parallel implementation of the DSN 
learning algorithm. In particular, we show how the gradient is 

computed in CPU clusters and what the tradeoff looks like 

between the gain derived from the parallelism and the cost due to 

inter-CPU communication.  
Unlike most other deep models, the implementation of 

learning algorithms for the DSN does not require GPU units 

even for large datasets. The importance of our parallel 

implementation lies in the scalability to vast amounts of training 
data.  This capability is a key for the potential use of the DSN as 

a component of future speech recognizers based on deep models. 

Parallel implementation for DSN learning makes it possible to 

use a full-batch, gradient descent training procedure. The 

classification results presented in earlier papers [5][6] were 
limited to mini-batch training due to the memory constraint 

within a single CPU. The new classification results shown in this 

paper further confirm the effectiveness of the DSN and its 

learning algorithm. Specifically, we demonstrate that the full-
batch training, enabled by parallel learning distributed over CPU 

clusters, gives substantially fewer classification errors than the 

corresponding mini-batch training under otherwise identical 

experimental conditions.  

2. Deep Stacking Networks 

   In this and the next sections, we provide an overview of the 

DSN architecture and its learning which are relevant to the 

implementation of parallel training as the main theme of this 

paper. The philosophy of DSN’s architecture design rests in the 
concept of stacking, as proposed originally in [16], where simple 

blocks of functions or classifiers are composed first and then 

they are “stacked” on top of each other so as to learn more 

complex functions or classifiers. Following this philosophy, [5] 
presented the basic form of the DSN architecture that consists of 

many stacking blocks, each of which takes a simplified form of 

shallow multilayer perceptron using convex optimization for 

learning the perceptron weights.  
   Fig. 1 gives an example of a three-block DSN, each consisting 

of three layers and each illustrated with a separate color. Two 

common and equivalent ways of showing the DSN architecture 

are depicted here, where “stacking” is accomplished by 
concatenating the immediately previous block’s output 

prediction vector with the original input vector to form the new 

“input” vector in the new block. (Other types of stacking are 

possible, e.g. [3], and will not be covered in this paper.)  The 
hidden layers in all blocks have the same sigmoid nonlinearity. 

Prediction and input layers in all blocks are linear. The DSN 

weight parameters   and   in each block are learned efficiently 

from training data, which we will describe in the next and the 

following sections from the algorithmic and implementational 

perspectives, respectively. 

3. Training in Deep Stacking Networks 

    The linearity of the output layer in each block of the DSN is a 

key design decision. Such linearity enables highly efficient, 
parallelizable, and closed-form estimation for the output network 

weight matrices   given the hidden units’ activities, denoted 

by   . Due to the closed-form constraints between the input 

weight matrix   and the output weight matrix  , the former can 
also be elegantly estimated in an efficient, parallelizable, batch-

mode manner. 



 

 
 

Fig. 1: Two common and equivalent ways of illustrating a typical DSN 

architecture used in this and recent studies. Hidden layers in all blocks 

are sigmoid nonlinear. Prediction and input layers are linear. Three 

blocks are shown here, each with a distinct color. 

  

     Denote the training vectors by   [            ], in which 

each vector is denoted by    [               ]
 

 where   is 

the dimension of the input vector, which is a function of the 

block, and   is the total number of training samples. Denote by   

the number of hidden units and by   the dimension of the output 

vector. Then, the output of a DSN block is     
     where 
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   ) is the hidden-layer output vector,   is an     

weight matrix at the upper layer of a block.   is a     weight 

matrix at the lower layer of a block, and  ( )  is a sigmoid 

function. Bias terms are implicitly represented in the above 

formulation if    and    are augmented with ones, which we 

adopt in this work. 

   Given target vectors in the full training set with a total of N 

samples,   [            ] , where each vector is    

[               ]
 
, the parameters   and   are learned so as to 

minimize the average of the total square error below: 
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where   [            ] and subscript F denotes Frobenius 

norm. Note that once the lower layer weights   are fixed (e.g., 

by random numbers or by a fixed restricted Boltzmann 

machine’s weights [5][6]), the hidden layer values   

[            ] are also determined uniquely. Consequently, 

the upper layer weights   can be determined by setting the 

gradient 
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to zero,  leading to the closed-form solution 

  (   )       (3) 

    When L2 regularization is applied in learning  , it can be 

easily shown that the learning formula becomes 

  (      )       (4) 

     The weight matrix   in each module of the DSN can be 

further learned using batch-mode gradient descent [17]. The 

computation of the error gradient makes use of Eq. (4) and 

proceeds by 
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where      (   )   is pseudo-inverse of   and symbol  
 denotes component-wise multiplication. Note the approximation 

used in deriving the gradient above, where we assume that the 

regularization parameter   is sufficiently small. Otherwise, the 
gradient would not have the simple, closed form of (5) due to 

lack of cancellation of a number of terms, and parallel 

computation of the gradient would become more complicated. 

The way to initialize   in gradient descent as required for 
stacking each block of DSN is not trivial; four methods were 

discussed in [6]. 

4. Parallel Computing for Weight Training 

     In this section, we describe our parallel implementation of the 

DSN weight learning algorithm. Specifically, we describe how 
the gradient of Eq. (5), denoted by G in Fig. 2,  involving all 

training data is computed over a CPU cluster.  

     In Fig. 2 we show data flow and the computation procedure in 

evaluating the gradient in Eq. (5). Each of the matrices in green 
is computed in parallel and its result is stored to disk. The 

parallelization is accomplished by parallelizing the matrix 

multiplies, having split each matrix in the product along the inner 

(shared) dimension (of size N).  The jobs in orange color are 
accumulators: they simply sum the individual green matrices.  

Because the summing can begin before all of the individual 

matrices have been computed, the accumlators introduce 

minimal delay into the parallel computing pipeline. The job in 
red color requires synchronizing over the parallel batches 

distributed over the CPU cluster; i.e. it must wait for all of its 

dependencies. The quantities in blue color are recomputed as 
needed instead of being distributed, as this reduces network and 

disk load and optimizes overall speed. 

     While a main motivation for parallel implementation of the 

DSN learning is to scale beyond the memory limits of a single 
machine, we also examine the effect of parallelization on overall 

computation speed. There is cost associated with parallel 

computation arising from the inter-process communication. 

Because our implementation uses network disk to store and load 
cached variables, this cost is non-trivial. In Fig. 3, we show the 

measured wall-clock run-time, over three repeated single 

instances at different times of a day, as a function of the total 

number of distributed processors. The task is to compute the 

gradient and to evaluate the training objective on the training 

data consisting of a total of 1.12 million training samples. As can 

be observed, the lowest total computation time is achieved when 



distributed over between four to ten machines. This gives an 

average speed-up of approximately three times over the single 
processor case. When more than ten parallel processors are used, 

we observe a rise in the total computation time, as a result of the 

additional disk access costs and of the inter-process 

communication. 
 

 

Fig. 2: Parallel computation for the gradient, G, of Eq. (5) in 

implementing the DSN learning algorithm. Specifically, four quantities in 

green are computed in parallel over a CPU cluster.  

 

   
Fig. 3: Run time of learning DSN as a function of the total number of 

distributed processors. Data from three independent runs at different 

times of a day are shown.   

5. State and Phone Classification 

Experiments 

Prior to the work reported in this paper, gradient-descent 

learning of the DSN’s weights was carried out in a mini-batch 

mode in a single processor [5][6]. This was mainly due to the 

memory limitation of the processor used in the experiments. 

Parallel implementation of the DSN’s weight learning enables 

distributing the training data as well as computation over 
multiple processors and thus supports the training in a full-batch 

mode, whose results are reported here. 

 

5.1 TIMIT experiments  
Detailed experimental setup and procedure for the TIMIT 

frame-level state and segment-level phone classification tasks 

have been described in [5][6] and will not be repeated here. Here 

we focus on our new experimental results. Table 1 presents the 
frame-level state classification and segment-level phone 

classification error rates for a wide sweep of the mini-batch sizes 

(i.e. the number of training samples) used in each weight update 

of the gradient descent algorithm for learning weight matrix   

according to Eq. (5). The results with full-batch fine-tuning are 

shown at the bottom row, and those with no fine-tuning shown at 

the top row. In these experiments, the DSN uses 3000 hidden 
units in each block and has a total of five blocks. Note that after 

each   update, the weight matrix U is estimated always with the 

full-batch data according to Eq. (4) after using the new W to 

compute H. Also, a sufficient number of iterations in gradient 
descent are carried out to reach convergence as judged by the 

TIMIT development set behavior. L-BFGS is used to update W 
[8] so that we do not need to tune the learning rate. The use of 

manually tuned learning rates and a FISTA procedure [1] for 
training is found to give similar results (not shown here).  

The frame-level state classification results in the middle 

column of Table 1 are obtained using the straightforward DSN, 

where the total number of state classes is 183. When post-

processing with dynamic programming [4][13] is applied to the 

three states for each phone and the 183 classes are merged into 

39, we obtain the segment-level phone classification results as 

shown in the final column of Table 1. 
 
Table 1: State (frame-level) and phone (segment-level) classification 

error rates for the TIMIT core test set as a function of the mini-batch size 

in the gradient-based learning algorithm for training each DSN module. 

MiniBatch Size State Err Rate Phone Err Rate 

No fine tuning 50.50% 30.10% 

1,000 49.30% 29.66% 

2,000 48.55% 28.50% 

5,000 47.75% 27.88% 

10,000 46.25% 26.20% 

20,000 45.30% 25.25% 

50,000 44.99% 24.90% 

100,000 44.60% 24.77% 

200,000 44.29% 24.10% 

250,000 43.98% 23.60% 

1,124,589 (full) 42.70% 22.20% 
 

It is clear from Table 1 that the error rates decrease strictly as 
the mini-batch size increases. Full-batch training gives a 

significantly lower error rate than all sizes of mini-batch training 

shown. Note the full-batch training is made possible via the 

parallel and distributed training over a CPU cluster as described 
in Section 4. Using a single CPU machine (with 48G memory) to 

implement the DSN’s fine tuning, we were limited by the 

maximal mini-batch size of 250k training samples (each sample 

with the dimensionality of 429), beyond which all memory in the 
machine became exhausted.  

 

5.2 WSJ0 experiments  

     To verify the effectiveness of the full-batch training, we also 
use the 5k-WSJ0 database [12] to run frame-level phone 

classification experiments.  5k-WSJ0 has 5000 words in the 

vocabulary. The training material from the SI84 set in the 

database contains 7077 utterances (15.3 hours of speech data) 
from 84 speakers. They are separated into a 6877-utterance 

training set and a 200-utterance cross validation set. The test set 

consists of the Nov92 evaluation data with 330 utterances from 

eight speakers [9]. For the short-time spectral representation of 
the speech signal we use the same MFCCs and their deltas as in 
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the TIMIT experiments; 11 frames are grouped as a single 

feature vector with 429 elements and are input to the DSN 
classifier. With the ten millisecond frame rate, the training set 

has a total of 5,232,244 frames as training samples, substantially 

larger than TIMIT. Further, unlike the TIMIT database where 

phone boundaries in training, development, and test sets are 
provided, no phone boundaries are given in WSJ0. In this work, 

we generate the phone labels and their boundaries in the data 

from the forced alignments using a tied-state cross-word tri-

phone Gaussian-mixture-HMM speech recognizer. These phone 
labels, with a total of 40 in size, together with their boundaries 

provide one-to-one mapping between each speech frame and its 

phone label as the target for training and evaluating the DSN. 

    In Table 2, we show again the effectiveness of the full-batch 
training enabled by parallel implementation in training the DSN, 

where the hidden layer contains 3000 units in each block and a 

total of five blocks are constructed for the DSN. The task is 

frame-level phone classification, without any post-processing as 

required for segment-level phone classification carried out for 

TIMIT. Use of no segment constraint creates more errors than 

when constraints are imposed via post-processing as done for 

TIMIT. But the number of classes on WSJ0 is relatively small 
(40 of them), phones and words in WSJ0 are reasonably clearly 

enunciated, and there are about five times more training samples 

in WSJ0 than in TIMIT. These account for similar phone 

classification error rates between TIMIT and WSJ0. 
 

Table 2: Frame-level phone classification error rate for the WSJ0 

test set as a function of the mini-batch size in the gradient-based learning 

algorithm for training each DSN module. 

Mini-Batch Size Phone Err Rate 

10,000 29.95% 

50,000 27.77% 

100,000 26.10% 

250,000 24.50% 

5,232,244 (full batch) 20.99% 

6. Discussions and Conclusion 

In this paper, we report our first parallel implementation of 

the DSN learning algorithm. We explore the tradeoff between 

the multi-processor speed-up and inter-CPU communication cost 
by examining the run time required to complete a fixed DSN 

learning task as a function of the number of the distributed 

processors.  The parallel nature of DSN learning presented in this 

paper is analogous to that in the batch-based EM learning 
algorithm prevailing in the current HMM speech recognition 

systems. This virtue is conspicuously missing in the recent deep 

neural network architectures [4]. 

     In phone classification experiments using both TIMIT and 
WSJ0 databases, we demonstrate a significantly lowered error 

rate achieved by DSN with full-batch training, which would be 

impossible without parallel training, than with the corresponding 

mini-batch training carried out in earlier work [5][6]. This result 
forms a stark contrast to fine-tuning deep neural networks by 

back-propagation [4][10], where the error rate was found to 

saturate quickly (i.e., to stop decreasing) as the mini-batch size 

increases. This may account for why stochastic or mini-batch 
gradient descent has been popular for learning the deep neural 

networks; i.e., full-batch training would not lower the error rate 

but instead waste computing time using the same number of 

network weight updates.  

The availability of parallel training and the effectiveness of 

batch-mode learning verified in this work have opened the door 
for a wide range of DSN applications to large-scale speech and 

related information processing in GPU-free computation 

environments. We are currently pursing applications of DSN in 

speech recognition, speech understanding, and information 
retrieval while refining and improving its architecture. 
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