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Abstract
This paper presents a set of novel duration features for detecting
pitch accent and phrase boundaries, which depend on articula-
tory timing rather than segmental duration information. The
features are computed from the detected syllable nuclei and
boundaries, using peaks and valleys in an energy contour but
also leveraging information from a simple HMM phone man-
ner class recognizer to increase recall. In experiments on the
hand-segmented TIMIT corpus, we obtain greater than 90% F-
measure for vowel detection. In prosody detection experiments
on the BU Radio News corpus, comparing to a segmental fea-
ture baseline, we obtain similar performance for pitch accent
detection and slightly worse boundary detection from the new
features without the need for phonetic alignments.
Index Terms: prosody, prominence, pitch accent, boundary de-
tection, duration features

1. Introduction
For speech transcription aimed at spoken document processing
and dialog systems, it can be useful to recognize segmentation
and emphasis patterns along with the words. One alternative is
automatic recognition of prosodic events in speech. Recogni-
tion of a variety of prosodic events has been explored in many
prior studies, typically combining acoustic and lexical/syntactic
features; e.g. [1, 2, 3, 4]. While a range of acoustic cues are
useful in prosody modeling, it is well known that duration cues
are particularly important [5, 6].

Duration features that have been used include syllable or
syllable nucleus durations in [4] and allophone duration and av-
erage duration (over a allophone window) in [1]. The features
in [2], upon which our baseline segmental feature set is based,
include various types of normalized word and phonetic segment
duration, where start and end times of the units are found as a
by product of the word decoding process or via forced align-
ment of the speech signal to a specified word sequence. At a
minimum, normalization accounts for phone identity, but some
systems account for speaker identity or speaking rate as well.

One practical problem with using segmental durations in
the feature set, for developers using third-party (off-the-shelf)
speech recognition software, is that commercial systems typi-
cally do not provide phonetic time alignments with the word
recognition output, though word times may be available. In
[7], a substitute set of features is proposed that does not require
phone time alignments but instead uses word durations normal-
ized by summed phoneme average duration statistics. While
they report good results for accent and boundary detection, the
approach obscures cues known to occur at the syllable level.
(Accented words are longer primarily just in the accented sylla-
ble, and phrase final words are longer primarily in the rhyme of
the word-final syllable.) In addition, there is evidence that the
timing of articulatory gestures may be more relevant to detec-

Figure 1: Example energy contours for the word “hall” in nor-
mal (top), pitch accented (middle), and phrase-final (bottom)
contexts. Full bars mark hand labeled word boundaries, short
bars mark the automatic placement of peaks and valleys.

tion of prosodic events than segmental duration. In [8], using
magnetometer recordings of the speech articulators, it was ob-
served that phrase-final lengthening is fundamentally an artic-
ulatory gesture phenomenon. In other words, the relative tim-
ing of the transition between the opening and closing gestures
within the syllable helps to distinguish between syllables that
are lengthened due to accent vs. phrase-final positioning. Fig-
ure 1 illustrates this, showing the differences in lengthening and
peak timing for unmarked, accented and phrase-final syllables.

The goal of this work is to develop duration feature extrac-
tion algorithms that more closely represent the relative timing
of lengthening in different contexts, but also eliminate the need
for word-based phonetic segment alignments. The approach ap-
proximates articulatory timing by identifying “peaks” and “val-
leys” in the energy of the speech signal. Peaks mark the loca-
tion of highest energy within the syllable nucleus; valleys aim
to identify syllable boundaries using acoustic cues.

The basic approach is to first identify peaks and valleys, as
described in section 2 and assessed in section 3, then extract du-
ration features from these time points as discussed in section 4.
We compare the new features to segmental durations in pitch
accent and boundary detection experiments in section 5. Key
findings are highlighted in section 6.

2. Identification of Peaks and Valleys
2.1. Prior Work

Our first task of finding the “peaks,” or highest energy points for
each syllable, is effectively the task of vowel detection. Much
work has been done on the problem of finding vowel locations.
In many cases, the vowels are used as a proxy for speaking rate
[9, 10, 11], but other uses include language identification [12].



In [9, 12], the energy in the spectrogram is summed over se-
lected subbands, and post-processed to reduce noise. The re-
sulting peaks in these energy trajectories are considered to be
vowels. In [10] subband cross-correlation is a central compo-
nent to their vowel finding algorithm. It is important to note
that these algorithms were developed for applications for which
the exact placement of the vowel is not critical.

Finding “valleys” is closely related to syllable segmenta-
tion. The task of syllable segmentation has been studied for
purposes of improving speech recognition accuracy and con-
catenative speech synthesis. In [13], four different algorithms
are compared on the TIMIT corpus. In three of the algorithms,
the syllable boundaries are minima of a filtered, rectified, and
down-sampled time-domain signal. In the fourth algorithm, the
short-term Fourier Transform is filtered, rectified, and mapped
to 9 critical bands. The syllable boundaries are the union of
the signal maxima from each band. A data-driven learning ap-
proach is used in [14], where a neural network is trained with
spectral discontinuity features.

2.2. Peaks

We compare three different techniques for finding the peaks
of syllable nuclei, including two previously described methods
based on energy contours and a simple Hidden Markov model
(HMM) approach. The results are combined using a decision
tree classifier to improve over the individual methods.

The first peak-finding algorithm, referred to here as theen-
velopeapproach, is based closely on work by Pfau and Ruske
[9]. A modified loudness curve is created by summing over
specific energy bands and then smoothing with a Gaussian fil-
ter. The local maxima in the loudness curve are found and tested
against two criteria. First, the zero-crossing rate must be below
a certain threshold, and second, the peak magnitude must be
greater than some percentage of the moving average. Maxima
that meet these two criteria are considered peaks. The second
method, developed by researchers at USC [10], uses a tempo-
ral and spectral correlation algorithm, and is referred to as the
USC approach. The finalmanner approach uses manner-of-
articulation HMMs, placing peaks in the center of vocalic seg-
ments in a Viterbi alignment. The manners used for this re-
search include 3 vocalic classes (full vowel, reduced vowel, and
syllabic consonant) and 5 non-vocalic classes (stop, nasal, frica-
tive, approximant, and silence). We trained tri-manner left-to-
right HMMs using the HTK toolkit [15]. Each HMM has three
emitting states, with diagonal covariance Gaussian mixture dis-
tributions. The number of component Gaussians is tuned to a
development set, never exceeding the number of phones in the
given manner class. The 39-dimensional acoustic features con-
sist of cepstral mean normalized mel-frequency cepstral coeffi-
cients plus delta and acceleration coefficients. Decoding uses a
manner class bigram, with the grammar scale factor and phone
insertion penalty tuned on a development set.

To exploit the differences in the errors made by the various
peak methods, we merge the three sets of hypothesized peaks
and keep or discard each merged peak using a decision tree clas-
sifier. The merging algorithm starts with all peaks detected by
the envelope approach, adds peaks from the USC set for any
segments that are not already associated with an envelope peak,
and finally adds a peak at the center of any vocalic segment de-
tected by the manner HMM that was not associated with a peak
from one of the other algorithms. This approach to merging
favors the energy-based peak algorithms, introducing manner
peaks only when a false negative is suspected, which most of-

ten occurs on reduced syllables. For each peak in the merged
set, fifteen features are extracted to be used as input to a deci-
sion tree that predicts which of the merged peaks should be dis-
carded. The features include the type of peak, the manner and
duration of the current, previous and following segments, and
the number of hypothesized peaks according to each method.
The peaks are labeled as “keep” for the one closest to the ref-
erence within a vocalic manner segment and “discard” for all
others. Using the IND toolkit [16], a decision tree is learned
using 10-fold cross-validation on the training data.

2.3. Valleys

Similarly to peaks, three different methods are employed to find
valleys, which are designed to mark syllable boundaries. The
envelopemethod uses the local minima in the modified loud-
ness curve from the [9] algorithm. In a second approach,spec-
tral discontinuity is computed by differentiating each energy
band and then summing the derivatives at each time. The idea
is that syllable onsets often occur at a sharp transition between
sounds, resulting in a large spectral discontinuity value that is
less likely within a syllable [14]. Finally, a third set of valleys
are hypothesized using themanner alignments together with
simple rules based on the maximum onset principle [17]: make
the onset as large as possible while preserving the property that
the segments in the onset increase in sonority. There are known
exceptions to this simple rule that cannot be identified based on
manner alone, so the rule-based syllabifications are imperfect
but useful nonetheless.

We combine the valleys hypothesized by the various meth-
ods to have exactly one valley before and after each peak, with
the exception that two valleys are used to mark edges of silent
regions. Valleys at word boundaries (taken from the recognizer)
and silent regions are first placed deterministically, and other
hypothesized valleys within the given peak to peak region are
discarded. Valleys in other regions are predicted from the set
hypothesized by the different algorithms using a regression tree,
for which we explored two alternative strategies, as follows.

The per-valley regression tree combination produces one
feature vector per candidate valley. Training examples are la-
beled by the (signed) offset to the reference valley within their
peak-to-peak region. The regression tree estimates this offset
for each hypothesized valley in a region, and the valley with the
smallest absolute offset is chosen. If there are no hypothesized
valleys, then one is inserted in the middle of the region.

The per-region regression tree combination produces one
feature vector per candidate peak-to-peak region. Features in-
clude the manner of the current, previous and following seg-
ments, the number of hypothesized valleys for each region, and
the median valley location per valley-finding method. Training
examples are labeled by the relative location of the reference
valley within a region, in the range[0, 1]. The tree predicts this
location, which may not coincide with an actual valley.

3. Peak/Valley Detection Experiments
While the ultimate goal for extracting peaks and valleys is to
construct novel duration features, it is informative to assess the
intermediate results of vowel detection and syllabification, both
for choosing between algorithm alternatives and for understand-
ing limiting factors in the approach.

The various peak/valley detection algorithms were evalu-
ated on the TIMIT corpus, which contains read speech from
630 speakers. We divide the training set into a 3440 utter-



Table 1:Peak Method Results.

Method Prec. Recall F-Measure

Envelope 92.6 87.4 90.0
USC 96.1 81.8 88.4

Manner 94.4 91.4 92.9
Combined 94.1 90.6 92.3

Table 2:Valley Method Results.

Method Prec. Recall F-Measure Avg Dist (ms)

Envelope 79.9 81.6 80.7 64
Spec. Disc. 63.1 85.4 72.6 78

Manner 67.6 85.6 75.5 69
Per-Valley 80.2 85.8 82.9 36
Per Region 80.5 85.4 82.9 38

ance training set and a 256 utterance development set, and re-
port results on the standard test set. From the hand-marked
phone level annotation, we automatically construct reference
peaks and valleys as follows. Reference peaks are located at the
energy maximum within the interior 50% of each vocalic seg-
ment, where the energy is computed using a five-frame triangle-
window moving-average of the unsmoothed energy measure-
ments produced by the envelope method. Reference valleys are
located by finding syllable boundaries using the highest speak-
ing rate syllabification generated using the tsylb2 program [18]
and then placing a valley in the center of ambisyllabic segments
or at the segment boundary for regular syllable boundaries.

Since the reference peaks are not associated with hand-
marked times, we considered any peak within a labeled vowel
region (with a±10 ms tolerance) to be a correctly identified
peak. The results obtained for each of the three methods are
presented in Table 1, together with the combined result. The
combined method, relying largely on energy-based peaks, ob-
tains a similar F-measure to that of the manner method while
preserving the timing advantage of the energy peaks.

To evaluate the quality of a valley sequence, we not only
measure the precision and recall, but we also compute the av-
erage distance from the reference valley for each correct detec-
tion. Specifically, we aligned the hypothesized valleys to the
reference valleys using a modified Levenshtein distance with a
fixed penalty (1) for inserting and deleting a valley and a “sub-
stitution penalty” for aligning two valleys equal to the distance
(in seconds) between them. The results of the various valley
methods are presented in Table 2. For computing precision and
recall, we considered any valley aligned to a reference bound-
ary to be correctly identified. The combined methods lead to
the best performance, with the main impact being a reduction in
the distance to the reference valley.

4. Non-Segmental Duration Features
Our original feature set is based on the prosodic features used
for sentence segmentation in [2], and contains nearly 100 differ-
ent features including various normalizations of pitch, energy,
word duration, pause duration, time into current story, and seg-
mental durations. Except for the segmental durations, which
require phone alignments, the features can be computed from
the word alignments. We refer to this non-segmental set as
the “basic” set. The segment duration features include vari-

ous normalizations of average and maximum vowel duration,
last rhyme duration, last vowel duration, and vowel and rhyme
durations of the primary stressed syllable, where the normal-
ization factors are estimated on a separate speaker-independent
broadcast news corpus (TDT4). These features were computed
from phone alignments, using a stress-marked dictionary to de-
termine primary stress. Given the peaks and valleys, we aimed
to replace the segmental features with new features that do not
depend on phone alignments.

Since peak/valley detection is independent of word recog-
nition, the number of syllables defined by the peaks and valleys
may not match up with the number of syllables in the dictionary
entry for that word. However, because we are only computing
features on the last and stressed syllables, we can select those
syllables using simple rules. The last syllable is taken to be the
region between the two valleys surrounding the last peak in the
word. The stressed syllable is chosen via a simple left-to-right
alignment of the hypothesized peaks to the syllables in the dic-
tionary entry, allowing skips of reduced syllables in the dictio-
nary when there are fewer hypothesized peaks than dictionary
syllables. When there are multiple dictionary pronunciations,
the first is used. Explicitly aligning to multiple pronunciations
would improve performance, but we conjecture that the differ-
ences are minimal.

For each of these syllables three features are created: rhyme
duration (the distance between a peak and its following valley),
syllable duration (the distance between two adjacent valleys),
and ratio (the syllable-to-rhyme duration ratio). The ratio fea-
ture is an indicator of the relative location of the peak in the
syllable. (The average and maximum vowel durations in the
segmental feature set are not replicated in our new feature set.)
Two normalized versions of each feature are also created. The
first roughly accounts for speaking rate. The syllable duration
(or rhyme duration, or ratio) is divided by the average duration
over a sliding window of 5 syllables centered on the current
syllable. The second normalization accounts for inherent differ-
ences in phone durations. The total syllable (or rhyme) duration
is divided by the sum of the average durations for the associated
phones (from a pronunciation dictionary), using the same table
as for segmental normalization.

5. Prosody Recognition Experiments
We perform our prosody recognition experiments using a sec-
tion of the Boston University Radio News corpus [19] read by
speaker “f2b.” This professionally read corpus is annotated with
phonetic alignments derived from the orthographic transcrip-
tions, part-of-speech (POS) tags, and tone and phrase boundary
tags based on the ToBI prosodic labeling conventions for Amer-
ican English [20]. The prosodic labels (done by human label-
ers) include 7 pitch accent categories and a phrase break index
ranging from 1 to 6 for each word boundary. We map all pitch
accents to a single “pitch accent” class and all phrase break in-
dices above 4 to the boundary class. (This is similar to previous
work on ToBI label recognition with this corpus, such as [1],
though [4] defines the boundary class to include break indices
3 and above.) The training set consists of 16 broadcast stories,
totaling 5087 annotated words; the test set consists of 4 lab sto-
ries, totaling 2112 annotated words. About half the words in
the training set have pitch accents, while roughly 20% precede
a boundary.

We use BoosTexter [21] as our classifier, following [22].
Experiments were performed with several different feature sets,
with and without POS tags; results are summarized in Table 3.



Table 3:Prosody Recognition Results.

Results for Pitch Accents (F-Measure)
Feature Set w/o POS w/ POS
Basic 85.6 86.0
Basic + Segmental 85.3 85.9
Basic + Per-Valley 85.8 85.1
Segmental Stress + Word-Dur 82.4 85.1
Per-Valley Stress + Word-Dur 83.1 84.7

Results for Boundaries (F-Measure)
Feature Set w/o POS w/ POS
Basic 78.5 78.1
Basic + Segmental 80.1 81.2
Basic + Per-Valley 77.9 80.3
Segmental Str/Last Rhyme 69.5 80.0
Per-Valley Str/Last Rhyme + Ratios 63.5 73.1

Note that the “basic” features are only the non-segmental ones
from [2] (pitch, energy, word duration, etc), while the “segmen-
tal” are phone-alignment-based duration features. Results on
the development set were similar for the per-valley and per-
region methods, so we include just the per-valley results. For
both pitch accent and boundary classification, we compare the
segmental duration set with the new feature set (both paired
with the basic features). For the pitch accent case we com-
pare the segmental stressed rhyme and vowel duration features
against the new per-valley stressed rhyme, syllable and ratio
features; we include word duration also because in preliminary
experiments we observed that it is the most useful feature for
predicting pitch accent.1 For boundary detection, we compare
the segmental stressed and last rhyme features against the new
per-valley stressed and last rhyme features along with ratios.
The number of BoosTexter training rounds was tuned to the de-
velopment set; 400 was selected for the boundary task, 200 for
emphasis. Subsequent analysis indicates that our boundary de-
tection classifier may have been over-trained, and that a smaller
number of rounds would have been preferable.

When combined with the basic and POS features, the two
sets of duration features have similar results but neither is use-
ful for emphasis detection. If either the POS or the basic fea-
tures are omitted, the results are similar for both feature sets for
emphasis, but there is a degradation associated with the non-
segmental features for boundaries. Alone, both feature sets are
informative, since the F-measure is much higher than predic-
tion based on priors (roughly F=20%). Anecdotal inspection of
errors suggests that the new non-segmental approach might be
improved by using additional features from the energy contour.

6. Conclusion
This work created non-segmental duration features that achieve
similar performance to their segmental counterparts for pitch
accent detection, but slightly worse performance in boundary
detection. If phone alignments are not available, these new fea-
tures could be substituted for traditional duration features with
little degradation in performance. Furthermore, the features ap-
pear to be robust to different data sets, in that the systems were
trained on TIMIT but tested on the BU Radio News corpus. As a
byproduct of this work, a vowel nucleus detector and a syllable
boundary detector were created, both of which are competitive

1This may be since, as reported by others, it helps distinguish con-
tent words, which are more likely to be emphasized.

with current systems [9, 13]. An important next step is to assess
the features on speaker-independent data from different genres.
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