
Deep Learning Approaches to Chemical Property
Prediction from Brewing Recipes

Gracie Ermi,∗† Ellyn Ayton,‡ Nolan Price‡ and Brian Hutchinson‡§

†Vulcan Inc., Seattle, Washington
‡Western Washington University, Bellingham, Washington

§Pacific Northwest National Laboratory, Richland, Washington

Abstract—Despite the explosion of craft beer brewing over
the last decade, there is virtually no work in the public
domain exploring machine learning approaches to understand
and optimize the brewing process. Learning to map between
representations of an object across different domains is one of
the fundamental challenges in machine learning. There are at
least three distinct representations of beer that one may wish to
learn to map between: 1) the brewing recipe, 2) the chemical
composition of the resulting beer and 3) the written reviews of
the beer. The mapping between any pair of these three domains
is highly non-linear. Brewing beer involves complicated biological
and chemical processes, while the human qualitative perception
of a beer may be even more complex. In the work described
in this paper, we focus on the former: mapping between the
recipe and chemical attribute domains. We use two deep learning
architectures to model the non-linear relationship between beer
in these two domains, classifying coarse- and fine-grained beer
type and predicting ranges for original gravity, final gravity,
alcohol by volume, international bitterness units and color. Such
models could be used to optimize recipes to produce desired
chemical properties of the beer, allowing brewers to design
better tasting beer, faster and with less waste. Using a set of
approximately 223K brewing recipes from homebrewing site
brewtoad.com, we find that deep and recurrent neural network
models significantly outperform several baselines in predicting
these attributes, offering relative reductions in classification error
by 20%+ and reducing the root mean squared error for the
attribute ranges by 44% relative to the best baseline.

I. INTRODUCTION

Many important tasks require mapping mapping between
distinct, highly non-linearly related domains; e.g., image
classification, speech recognition. On task that has garnered
relatively little attention is that of modeling the processes
of beer brewing. Brewing too involves several distinct
representations in non-linearly-related domains. In one view,
a beer can be described by a recipe, which specifies the
particular ingredients required, their quantities and the times at
which they are added during the brewing process. In another
view, a beer can be described by its objective chemical
attributes; for example, color, bitterness, relative presence of
various flavor and aroma compounds, etc. Finally, a beer can
be viewed through the way it is perceived subjectively; e.g.,
in the words used to describe it in written reviews. This work
focuses on one aspect of this domain mapping problem: being
able to accurately predict the chemical attributes of beer

∗Work conducted as a student at Western Washington University.

from its recipe. Combined with a search through the recipe
space, this mapping would allow rapid development of new
beers, and allow brewers to optimize for flavor, brewing time
and consumption of resources. There are many challenges,
including the fact that recipes are of variable length, involve
a large “vocabulary” of ingredients and are only partially
ordered. We propose two deep learning approaches to this
mapping: first, deep neural networks (DNNs) that take as
input a bag-of-ingredients featurization of the recipe, and
second, recurrent neural networks (RNNs) acting as encoders
that consume ingredient sequences as input. For both models,
we tackle three prediction tasks: a coarse-grained beer type
prediction task (ale, lager or wheat), an 81-way fine-grained
beer type prediction task (e.g. robust porter or american ipa),
and a 10-dimensional regression task of important chemical
properties of beer (e.g. measuring alcohol content, bitterness,
or color). The next section provides some preliminary
information on brewing.

II. BREWING BACKGROUND

There are four major classes of ingredients in brewing
recipes: fermentables, hops, yeasts and other miscellaneous
additives. Fermentables (mostly malts) contain sugars that will
be fermented by the yeast, producing alcohol. Lighter malts
produce lighter-colored beer while darker malts (those that are
toasted for a longer period of time) create a darker-colored
beer. Hops, the flowers of the humulus lupulus plant, serve
three major purposes: to add bitterness, flavoring and aroma.
The yeast metabolizes sugars into alcohol; different strains of
yeast produce distinctive flavor and aroma compounds. Any
other ingredients added to the beer during the brewing process
fall under the Miscellaneous category. These include special
flavoring additives (e.g. vanilla, orange peel).

Brewing a batch of beer is a complicated process, sometimes
taking months to complete. First, barley is milled (crushed) to
expose the starchy contents of the barley seed. This milled
grain is then added to a “mash tun,” and combined with water
at a specific temperature to activate enzymes that produce
sugar. The mash is then filtered in a “lauter tun” to separate
the sugary water, known as wort, from the grain. The gravity
of the wort measures the amount of dissolved sugars in the
water; the higher the gravity, the more sugar that is available



to be converted into alcohol during fermentation. The wort
is then brought to a sustained boil, usually for at least one
hour. During the boil, different quantities and varieties of
hops are added strategically. Hops contain alpha acids that are
isomerized during the boil to produce bitterness. Different hop
varieties have different amounts of alpha acids. Complicated
factors affect the extent to which alpha acids are isomerized
and dissolved into the boil, including the duration that the
hops are boiled, the strength of the boil, and the wort’s
gravity. In practice, some hops are added early primarily for
bittering, some are added toward the end of the boil to impart
flavoring, and others may be added at the end of the boil or
during fermentation to contribute both flavoring and aroma.
The exact timing, quantities and varieties can produce vastly
different-tasting beer. After boiling the wort (usually for one
to two hours) any malt or hop particles are removed and
the cooling process begins. It is crucial to cool the wort as
quickly as possible to avoid forming undesirable flavor and
aroma compounds. The wort is usually cooled to around 70◦

Fahrenheit for ales and to about 50◦ Fahrenheit for lagers.
After the wort has sufficiently cooled, the “original gravity”

(OG) reading is taken, which will later be used to estimate
alcohol by volume. Finally, the yeast is pitched into the
cooled wort, possibly after oxygenating the wort to facilitate
yeast growth. The yeast rapidly reproduces, metabolizing
sugars and oxygen into alcohol and carbon dioxide, among
other byproducts. This conversion process, referred to as
fermentation, can range from taking several days to several
months. At the end of fermentation, a “final gravity” (FG)
reading is taken to assess how much of the sugar was
converted by the yeast. At this point the beer may be filtered
and then kegged, canned or bottled for distribution.

III. PRIOR WORK

Limited prior work has been conducted applying machine
learning to fermentation, including both beer and wine. Most
of this work has been focused around recommendation and the
analysis of reviews of various beverages. Lipton et al. [1] use
RNNs to classify and generate beer reviews collected from
review site BeerAdvocate1. They generate reviews character
by character conditioned upon the author, specific beer, beer
category, or sentiment. Carroll’s thesis [2] introduces an appli-
cation for the recommendation of wine close to a users location
and based upon their previous indication of taste preferences.
McAuley et al. [3] use a dataset of beer reviews from review
site RateBeer2 to analyze how a beer consumer’s tastes will
change over time. Among their findings are that lagers are
more accessible and rated higher by novice beer drinkers while
strong ales, such as India Pale Ales (IPAs), are rated very
highly by experienced beer drinkers. Kiddon [4] worked in the
general recipe space and built a Neural Sequence Generation
Model (a neural language model) to take a final product and

1https://www.beeradvocate.com/
2https://www.ratebeer.com/

a list of ingredients and generate the recipe’s text. Kiddon’s
model uses attention mechanisms to record which ingredients
have already been used and which ingredients to reference
next. Additionally, Kiddon et al. [5] use an unsupervised
expectation-maximization approach to predict the next step in
an instructional recipe. The recipe is divided into semantic
groups and then one part of the recipe is fed into the model
which predicts the next step. The next step is based on the last
used verb, or if there was no last verb, the model introduces
a new ingredient.

To our knowledge, no prior work has used machine
learning to predict the chemical attributes of beer from
brewing recipes. However, learning sequence representations
has a long history. RNNs (e.g. Elman networks [6]) have
been used for decades. In 1997, Hochreiter and Schmidhuber
introduced Long Short-Term Memory (LSTM) networks [7],
which have experienced a resurgence in popularity in the past
decade owing to their ability to better model long sequences.
Similar models (e.g. utilizing Gated Recurrent Units [8]) are
also widely used. In quick succession, several researchers
introduced RNNs to map variable length input sequences to
fixed length vector representations [8]–[10]. Such networks
are often referred to as “encoders” and paired with decoder
networks that map the vector back into a variable length
sequence; this strategy is particularly popular for machine
translation.

IV. APPROACH

A. Problem

In this work, we focus on three prediction tasks that map
from the domain of beer recipes to the chemical attributes of
the resulting beer.

1) A three-way “coarse-grained” classification task. This
task classifies a beer as one of three high-level categories
for beer types: Ale, Wheat or Lager.

2) An 81-way “fine-grained” classification task. Here we
learn to predict more specific type classification labels
for beer recipes (e.g. American IPA, Dry Stout, Premium
American lager, etc.). See Appendix for a complete list.

3) A multivariate regression task that predicts 10 style
attributes of a beer given its recipe. These attributes
are the minimum and maximum values for each of the
following: original gravity (OG), final gravity (FG),
alcohol by volume (ABV), International Bitterness
Units (IBU), and color.

B. Featurization

We consider two feature representation strategies for the
brewing recipes. The first approach represents a recipe as a
bag of ingredients, producing a fixed-length vector suitable
for most machine learning techniques. This representation is a
straightforward, conventional way to represent a beer recipe
while also capturing some relevant information about beer
ingredients. Notably, this representation does not capture the



sequential nature of a recipe, but it does express the unique
collection of the individual ingredients that contribute to the
resulting beer.

The second featurization strategy represents a recipe as a
set of five ingredient sequences, one for each ingredient type
(fermentable, boil hop, dry hop, yeast, miscellaneous), which
can be consumed by five encoder RNNs. Each ingredient
contains not only the type and quantity, but in the case of
fermentables and boil hops, when it is added to the boil.
Note that the brewing recipe is only partially ordered: several
ingredients may be added at the same time. When two
ingredients have no true order, we order them arbitrarily.
Disregarding the sequential steps, ingredients could instead
be modeled as sets (e.g. [11]); exploring that direction is left
for future work. Due to the open vocabulary nature of recipes,
sufficiently rare tokens are mapped to an out-of-vocabulary
token, <oov>, for both approaches.

1) Bag of Ingredients: Our first featurization strategy rep-
resents recipes as a bag-of-ingredients. Each recipe vector is
the concatenation of six subvectors:
1.1) A binary, multi-hot vector whose length is equal to

the number of in-vocabulary yeast types. This indicates
which yeasts are used in the recipe (often just a single
yeast type). Note that we indicate only which yeasts are
present and not their respective quantities, because the
quantity of yeast is not particularly important.

1.2) A real-valued vector whose length is equal to the number
of in-vocabulary fermentables. Each element indicates
the quantity (in kg) of the fermentable.

1.3) A real-valued vector whose length is equal to the num-
ber of in-vocabulary hops. Each element indicates the
quantity (in oz) of the hop added during the boil.

1.4) A real valued vector whose length is equal to previous
vector, whose elements indicate time at which the hop
is added to the boil (in minutes prior to end of boil).

1.5) A real-valued vector whose length is equal to the num-
ber of in-vocabulary hops. Each element indicates the
quantity (in oz) of the hop used for dry-hopping. Time
is not recorded for dry hops. Hops used in the boil can
also be used as a dry hop in the same recipe.

1.6) A binary, multi-hot vector whose length is equal to the
number of in-vocabulary miscellaneous ingredients. This
indicates which miscellaneous ingredients are used in
the recipe. Because there are not standard units for these
ingredients, we do not include their quantity.

The concatenation of these subvectors yields a feature
vector with length 3027. This number is the sum of the
total number of different types for each type of ingredient
(yeasts, miscellaneous ingredients, boil hops (x2), dry hops,
and fermentables).

2) Recipes as Sequences: Our second recipe representation
is as sequences of ingredients. Here we produce five
sequences: one each for fermentables, dry hops, boil hops,
yeasts and miscellaneous ingredients. Each boil hop is

h1 ... yhL

Fig. 1. The DNN model taking as input the bag-of-ingredients representation.

represented as the concatenation of a learned embedding
vector for the hop type, a quantity (in kg) and time (in
minutes) before the boil. Each dry hop and fermentable
ingredient is represented as the concatenation of a learned
embedding vector for the ingredient type and the quantity.
Each yeast and miscellaneous ingredient is represented by a
learned embedding vector for the ingredient type.

C. Deep Neural Network (DNN) Model

We first consider standard DNNs, which take as input the
bag-of-ingredients feature vector, with L hidden layers:

h(`) = g(WT
(`)h(`−1) + b(`)) for ` = 1, 2, . . . , L (1)

where g is the hidden activation function (e.g. tanh or ReLU)
and h(0) = x (the input). The trainable parameters are
the weight matrices (W(`)) and the biases (b(`)). We use
three DNN for our three prediction tasks: coarse-grained beer
type classification, fine-grained beer type classification and
beer attribute prediction (regression). For both classification
techniques, our output layer, y is defined as

y = softmax(WT
(L+1)hL + b(L+1)) (2)

giving posterior a probability vector over the output classes.
All model weights are trained with cross-entropy loss.

For the regression task, we use a linear (identity) output
activation

y = WT
(L+1)hL + b(L+1) (3)

where y ∈ R10 gives the estimate of the 10 attributes we are
predicting, and all model weights are trained to minimize the
mean squared error loss. See Fig. 1 for an illustration of the
DNN with the bag-of-ingredients features.

D. LSTM-DNN

The bag-of-ingredients representation loses the (partially)
sequential nature of the recipe. Fortunately, RNN encoders



h1

...

y

hL

xferm xdry_hop xboil_hop xyeast xmisc

LSTMferm LSTMdry_hop LSTMboil_hop LSTMyeast LSTMmisc

hferm hdry_hop hboil_hop hyeast hmisc

concat

Fig. 2. The LSTM-DNN model. The boxes for the bottom three layers
represent sequences; the last representation in each h sequence is concatenated
to form “concat.”

are quite effective at mapping variable length sequences to
a fixed length representation. We use the popular LSTM
model. Specifically, we train five separate LSTMs, one for
each ingredient type. Each of the five LSTMs has the following
standard form:

it = σ(WT
(i)xt + UT

(i)ht−1 + b(i)) (4)

c̃t = tanh(WT
(c)xt + UT

(c)ht−1 + b(c)) (5)

ft = σ(WT
(f)xf + UT

(f)ht−1 + b(f)) (6)
Ct = it ◦ c̃t + ft ◦ Ct−1 (7)
ot = σ(WT

(o)xt + UT
(o)ht−1 + V T

(o)Ct + b(o)) (8)
ht = ot ◦ tanh(Ct) (9)

Here t is the time index and i, f and o denote the input,
forget and output gates, respectively. The model parameters
are the set of weight matrices (W , U , V ) and the bias vectors
(b). All weights are trained jointly. We concatenate the final
ht from each of the five LSTMs and feed that as input into a
DNN. We refer to this combined model as the LSTM-DNN.
Fig. 2 illustrates our multi-encoder LSTM-DNN model. Like
our DNN model, the LSTM-DNN is used for two classification
and one regression task, employing the same output activation
and loss functions as the DNN.

We implemented both the DNN and LSTM-DNN using
Google Tensorflow library [12], and train both using mini-
batch stochastic gradient descent with the Adam optimization
algorithm [13].

E. Baselines

We compare our DNN and LSTM-DNN against several
baseline methods. All of our baseline models were trained

using scikit-learn [14].

1) Classification Baselines: For the classification tasks, we
consider three baseline methods. First, we use the majority
class baseline, in which the model always predicts the class
that was most common in the training set. Second, we use
sckikit-learn’s decision trees [15]. Third, we report results
using multinomial logistic regression [16]. In addition to these
baseline models, we considered Support Vector Machines
[17], but they were prohibitively slow to train and thus not
included in our comparison.

2) Regression Baselines: For the regression task, we again
consider three baselines. The first baseline merely predicts
ȳ, the average target (true output) over the training set. The
second is a linear regression model trained to minimize the
mean squared error loss. For our third regression baseline
we use decision trees. As was the case with SVMs for
classification, support vector regression [18] proved too slow
to include in our study.

V. EXPERIMENTS

A. Data

Our data consists of 228,596 XML formatted recipes taken
from brewtoad.com. These recipes were created and published
by homebrewers and many of the recipes were attempts to
recreate, or clone, existing professional beers. Each recipe
consists of the beer type, name, and a series of ingredients
including yeasts, fermentable, hops, and miscellaneous
ingredients. Additionally, the quantity and addition times for
the ingredients were included. The recipes, after removing
any duplicates, were randomly split 70%-10%-20% into train,
development and test sets. All training set recipes were parsed
and processed to produce an ingredient vocabulary, and then
each recipe was encoded using one of the representations
described in Sec. IV-B. The data consists of 87.9% ales, 5.6%
lagers, and 7.0% wheat beers. The most common fine-grained
type in the data is American IPA, making up 13.5% of the
data. The 10 most popular fermentables, hops, yeasts and
miscellaneous ingredients account for 14.7%, 35.2%, 46.1%
and 39.1% of their ingredients categories, respectively.

B. Prediction Attributes

There are five chemical properties that we aim to predict
in the regression task: the original and final gravities (OG
and FG), the international bitterness units (IBU), the alcohol
by volume (ABV), and the color. ABV itself is a function
of OG and FG: ABV = 133.62(OG − FG). IBUs are a
standardized bitterness measurement: the higher the IBU, the
more bitter the beer. Given known attributes of specific hop
varieties, IBUs values can be estimated using a complicated,
non-linear function known as the Tinseth formula. Color
is measured on a scale known as the Standard Reference
Method (SRM), which measures the attenuation of light of a



particular wavelength. An SRM of 1 is the lightest (a pale
yellow color), while and SRM of 40 is perceived as black.
SRM values can be approximated using a non-linear Morey
Equation. Our data does not contain the metadata required
to estimate OG, ABV, IBUs or SRM; instead, our model
must learn ingredient embeddings that encode the relevant
information by inferring from recipes and attribute targets in
the training data. All attributes were standardized prior to
training using the training set mean and variance.

C. Metrics
We evaluate our style predictions by calculating the root

mean squared error (RMSE) between our true values, ŷti , and
our predictions, yti averaged over all N data points:

RMSE =

√√√√ 1

N

N∑
i=1

‖yti − ŷti‖22 (10)

and evaluate the fine-grained and coarse-grained type predic-
tions using both accuracy and perplexity. Perplexity (ppl) is
cross-entropy exponentiated and is defined as follows

ppl = exp

(
− 1

N

N∑
i=1

C∑
k=1

y(i)k lnh(x(i))k

)
(11)

where C is the number of classes, N is the number of
datapoints in the set on which the evaluation is performed,
h(x(i))k is our model’s estimate for the posterior probability
of class k given the ith datapoint, and y(i)k is 1 if the true
class for datapoint i is k and 0 for all other k. The lower
the perplexity the better the model’s performance. We report
perplexities for the baselines when possible. For the “majority
class” baselines, these models just output the training set’s
empirical distribution over the classes.

D. Tuning
We tuned our model hyper-parameters on the development

set using grid search. For the DNNs, we tuned the hidden
layer dimension, the learning rate, the range for randomly
initializing our weight matrices, and the number of hidden
layers. We fix the batch size to 32 samples for all three DNNs.
For the coarse-grained classification, our best performance
was achieved with a model whose weights were initialized
within the range [−0.1, 0.1], a learning rate of 0.1 and three
hidden layers of size 100. Our best models for the fine-grained
classification and style attribute regression tasks have similar
hyper-parameter settings they use 200-dimensional hidden
layers.

For the LSTM-DNN, we tune the learning rate, the weight
initialization range and the number of DNN hidden layers.
We again fix the batch size to 32.Our best performing models
had identical hyper-parameter settings for all three tasks:
weights were initialized within the range of [−0.1, 0.1], the
learning rate was 0.05, and two hidden layers of size 20 were
used in the DNN component.

TABLE I
COARSE-GRAINED TYPE CLASSIFICATION RESULTS

Accuracy Perplexity
Majority Class 87.9% 1.58

Decision Tree 88.2% -

Logistic Regression 88.9% 1.45

DNN 90.1% ± 0.1 1.35 ± 0.01

LSTM-DNN 91.4% ± 0.0 1.26 ± 0.05

TABLE II
FINE-GRAINED TYPE CLASSIFICATION RESULTS

Accuracy Perplexity
Majority Class 14.4% 36.15

Decision Tree 27.6% -

Logistic Regression 23.0% 21.06

DNN 27.6% ± 0.6 15.73 ± 0.54

LSTM-DNN 34.3% ± 0.7 9.42 ± 0.24

E. Results

For all LSTM-DNN and DNN results, we report the mean
and standard deviation of our performance metrics for five
runs of the best set of hyper-parameters.

Table I summarizes model performance on the three-way
coarse grained classification task. Performance is good for all
models, owing to a large majority class, but is the highest
for the deep learning models, with the LSTM-DNN giving a
29% relative reduction in error over the majority class baseline
and a 23% relative reduction in error over the best baseline
(logistic regression). The DNN and LSTM-DNN also yield
lower perplexity, suggesting that they are producing better
probability distributions over the output classes.

Table II shows the results for the 81-way fine-grained
classification task. This is clearly a more challenging task, with
the baselines averaging 22% accuracy. Still, the deep learning
models give substantially better performance, with the DNN
obtaining 28% accuracy and the LSTM-DNN giving 34%. The
LSTM-DNN’s perplexity is 74% lower than the perplexity
given by the training set’s empirical distribution (“majority
class” perplexity).

Table III shows the results for the chemical property regres-
sion task, breaking down RMSE per attribute. While all of the
baselines had RMSEs greater than one standard deviation, all
of the deep models had RMSEs less than it. Again, the LSTM-
DNN gave the best performance, with a 44% relative reduction
in overall RMSE over the best baseline. Separating out the
RMSE by individual attributes reveals where the majority of
our error is concentrated. The max and min values for original
gravity appear to be the most difficult of the 10 attributes to
predict, followed by the minimum final gravity value.

To better understand what the models learn, Fig. 3
visualizes the learned recipe embeddings with the LSTM-
DNN on the fine-grained type classification task. Each point
is a recipe in the development set; its location is given by the
final hidden representation projected down to two dimensions



TABLE III
RMSE FOR ATTRIBUTES PREDICTION (REGRESSION) (USING STANDARDIZED ATTRIBUTES)

OG FG ABV IBU Color Overall
min max min max min max min max min max

Average 0.99 1.09 1.07 1.07 0.99 1.04 1.01 1.09 1.05 1.13 1.11

Lin. Regression 1.15 2.08 1.04 1.51 1.15 2.16 1.44 2.23 1.20 1.85 2.69

Decision Tree 1.19 1.19 1.16 1.20 1.18 1.18 1.10 1.14 0.92 1.02 1.28

DNN 0.93 0.91 0.92 0.93 0.93 0.91 0.86 0.88 0.85 0.86 0.90 ± 0.002

LSTM-DNN 0.91 0.83 0.70 0.52 0.58 0.45 0.46 0.47 0.48 0.49 0.62 ± 0.02

using T-SNE [19]. To reduce clutter, only the recipes from
the top 11 most common types are plotted. Despite the
dimensionality reduction, it shows intuitive trends: american
IPAs and imperial IPAs are heavily overlapping; the various
porters are nearby to each other, and saisons are the biggest
“outlier” class. Similar clustering occurs when plotting the
coarse types using the recipe embeddings learned by the
coarse-grained classification LSTM-DNN.

VI. CONCLUSIONS

In this work, we present two deep learning approaches
to predicting chemical attributes of beer from its brewing
recipe: the first, a deep neural network applied to a bag-of-
ingredients representation, and the second, an LSTM-DNN
with separate LSTMs to encode ingredient sequences. Both
models are evaluated on three task: classifying coarse-grained
beer type, classifying fine-grained beer type, and predicting 10
real-valued beer attributes. On all three tasks, the deep learning
models outperformed standard baselines, with the LSTM-
DNN model giving the best performance. By visualizing the
hidden representations, we observe that the model is learning
meaningful structure in the space of beer recipes.

Our results show that deep learning provides a promising
approach to the highly non-linear mapping from the domain
of recipes to the domain of chemical properties, but there are
many future directions. First, it would be worth exploring other
encoder architectures that more tightly match the partially
ordered nature of brewing recipes. Second, there are many
other mappings between domains that would be useful: from
chemical attributes to recipe, or between chemical attributes
and written beer reviews. Decoder RNNs could employed
to produce the recipes and reviews. These extensions would
allow brewers to discover novel, optimized recipes, and to
more precisely and easily refine existing recipes. Finally, there
are richer chemical representations than the ones we had
access to in this study; in particular, leveraging gas and liquid
chromatography data would be ideal.

ACKNOWLEDGEMENTS

The authors would like to thank the Nvidia corporation for
their donations of Titan X and Titan Xp GPUs used in this
work.

REFERENCES

[1] Z. C. Lipton, S. Vikram, and J. McAuley, “Capturing
meaning in product reviews with character-level generative text
models,” CoRR, vol. abs/1511.03683, 2015. [Online]. Available:
http://arxiv.org/abs/1511.03683

[2] C. Carroll, The Bottlefly IOS Application for Wine Recommendations.
California Polytechnic State University, 2016.

[3] J. J. McAuley and J. Leskovec, “From amateurs to connoisseurs:
modeling the evolution of user expertise through online reviews,”
in Proceedings of the 22nd international conference on World
Wide Web. ACM, 2013, pp. 897–908. [Online]. Available:
https://cs.stanford.edu/people/jure/pubs/beerrec-www13.pdf

[4] C. Kiddon, “Learning to interpret and generate instructional recipes,”
Ph.D. dissertation, University of Washington, 2016.

[5] C. Kiddon, G. T. Ponnuraj, L. Zettlemoyer, and Y. Choi, “Mise en place:
Unsupervised interpretation of instructional recipes,” in Proc. EMNLP,
2015, pp. 982–992.

[6] J. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp.
179–211, 1990.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[8] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” CoRR, vol. abs/1406.1078,
2014. [Online]. Available: http://arxiv.org/abs/1406.1078

[9] N. Kalchbrenner and P. Blunsom, “Recurrent continuous translation
models,” in EMNLP, 2013.

[10] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in Neural Information
Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2014,
pp. 3104–3112. [Online]. Available: http://papers.nips.cc/paper/5346-
sequence-to-sequence-learning-with-neural-networks.pdf

[11] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
and A. J. Smola, “Deep sets,” in Proc. NIPS. Curran Associates, Inc.,
2017, pp. 3391–3401.

[12] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[15] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Belmont, CA: Wadsworth, 1984.



Fig. 3. Plot of LSTM output representation of recipes for the fine-grained type classification task

[16] P. McCullagh, “Generalized linear models,” European Journal of Oper-
ational Research, vol. 16, no. 3, pp. 285–292, 1984.

[17] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, Sep. 1995.

[18] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik,
“Support vector regression machines,” in Proc. NIPS, 1996, pp. 155–
161.

[19] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

APPENDIX

Below we list the 81 self-reported fine-grained beer types
used in our experiments, including one catch-all “Other”
category for all types outside of the 80 most common types.

Other, American IPA, Imperial IPA, Sweet Stout, Bel-
gian Pale Ale, Kolsch, Specialty Beer, Weizen/Weissbier,
Oktoberfest/Marzen, Dry Stout, English IPA, Spe-
cial/Best/Premium Bitter, California Common Beer, Amer-
ican Barleywine, Belgian Dubbel, Robust Porter, Ameri-
can Stout, Extra Special/Strong Bitter (English Pale Ale),
Saison, Munich Helles, Maibock/Helles Bock, Ameri-
can Pale Ale, Munich Dunkel, Belgian Specialty Ale,
Witbier, Oatmeal Stout, American Wheat or Rye Beer,

Southern English Brown, Belgian Tripel, Weizenbock,
Flanders Brown Ale/Oud Bruin, Russian Imperial Stout,
Classic American Pilsner, American Amber Ale, Spice,
Herb, or Vegetable Beer, Belgian Golden Strong Ale,
Fruit Lambic, Dunkelweizen, Scottish Export 80/-, Biere
de Garde, Fruit Beer, Strong Scotch Ale, Cream Ale,
Premium American Lager, Blonde Ale, Belgian Blond
Ale, Christmas/Winter Specialty Spiced Beer, English
Barleywine, Irish Red Ale, Doppelbock, German Pilsner
(Pils), Brown Porter, Mild, Roggenbier (German Rye
Beer), Bohemian Pilsener, Gueuze, Foreign Extra Stout,
Vienna Lager, Traditional Bock, Wood-Aged Beer, Old
Ale, American Brown Ale, Dusseldorf Altbier, Standard
American Lager, Dark American Lager, Baltic Porter,
Other Smoked Beer, Berliner Weisse, Northern English
Brown Ale, Standard/Ordinary Bitter, Belgian Dark Strong
Ale, Flanders Red Ale, Schwarzbier (Black Beer), Lite
American Lager, Scottish Light 60/-, Scottish Heavy 70/-,
Straight (Unblended) Lambic, Classic Rauchbier, Northern
German Altbier, Dortmunder Export, Eisbock


