
Low n-Rank Tensor Log-Linear Models
for Classification

Caleb Nelson, Yulo Leake and Brian Hutchinson
Computer Science Department
Western Washington University

Bellingham, Washington

Abstract—Despite the wide array of powerful classification
techniques available, simple linear and quadratic models remain
important tools in a researcher’s toolkit, particularly for prob-
lems with relatively little training data. This paper introduces
a classification model that allows careful control of model com-
plexity, allowing intermediate levels of expressiveness between
linear and quadratic models. Our model is parameterized by a
third order tensor that multilinearly maps from input to output.
By controlling the n-rank of this weight tensor, we are able
to control the complexity of our model and therefore strike a
suitable balance between bias and variance. Two variants of our
model are proposed. The first induces the low n-rank structure in
the weight tensor via tensor nuclear norm regularization, yielding
a convex training procedure. The second explicitly constrains
the n-rank by parameterizing the tensor in terms of its Tucker
decomposition. Experiments are conducted on four standard
classification tasks, chosen to offer a variety of training set sizes,
feature dimensionality and number of classes. We find that that
the second model variant matches or outperforms each of three
baselines (majority class, linear classifier, quadratic classifier) on
all four tasks: it decreases relative classification error by as much
as 15.0% over a linear classifier, 31.6% over a quadratic classifier
and 28.9% over the majority class baseline. We also show
that despite the non-convexity in training the second variant,
it consistently outperforms the first.

I. INTRODUCTION

Navigating the bias-variance trade-off is one of the funda-
mental challenges of machine learning. To obtain performance
that generalizes to unseen data, a machine learning model must
be expressive enough to capture the true underlying patterns
in the data, but not so expressive that it overfits to the noise
present in the finite training set sample. Countless machine
learning models, training algorithms, regularization schemes
and other assorted techniques have been developed to empower
machine learning practitioners to find the balance that is most
suitable for their tasks.

This paper introduces the Tensor Log-Linear (TELLAR)
model for classification, parameterized by a third order weight
tensor, W . The TELLAR model multilinearly maps from the
input x ∈ RD to a posterior probability vector y ∈ RC .
In doing so, it captures second order information in the
input vector x, enabling it to learn non-linear, quadratic-
like decision boundaries. Model complexity can be controlled
by manipulating the n-rank of W: model expressiveness
decreases as the n-rank decreases. Through the n-rank, we can
effectively interpolate between the expressiveness of quadratic
and linear models. Additionally, we show that reducing W’s

n-rank has an intuitive interpretation; namely, it implicitly
learns a dimensionality-reducing feature transformation of x,
a low-dimensional continuous distributed representation of the
classes, and how the reduced features map to classes via their
low-dimensional representations.

Two variants of the TELLAR model are introduced in this
paper. The first promotes low n-rank via tensor nuclear norm
regularization. The tensor nuclear norm, although non-smooth,
is convex, and so training the model is convex optimization
problem and can be solved using proximal gradient descent.
The second constrains the tensor’s n-rank by explicitly pa-
rameterizing the model in terms of a Tucker decomposition
of W [1]. This second approach forfeits convexity, but offers
substantial improvements in space and time complexity.

II. BACKGROUND

A. Tensors

Tensors are multidimensional arrays. A vector w ∈ RI is
a first order tensor while a matrix W ∈ RI×J is a second
order tensor. Third order tensors W ∈ RI×J×K are indexed
by three indices, and so forth. Let W·jk denote the vector
obtained by fixing the second and third modes of the tensor
to j and k, respectively, and allowing the first dimension to
vary. W·jk is referred to as a mode-1 fiber. The set of mode-
1 fibers are {W·jk : 1 ≤ j ≤ K, 1 ≤ k ≤ K}. The sets
of mode-2 and mode-3 fibers are defined analogously. One
can unfold a tensor along a mode n into a matrix by taking
all of the mode-n fibers and arranging them as columns of
a matrix, the mode-n unfolding of W is denoted W<n>. A
tensor can be multiplied along the nth mode by a matrix W
to produce a new tensor, Y: Y = W ×n W . This operation
involves multiplying all of the mode-n fibers by the matrix
W . For example, multiplying W ∈ RI×J×K along the first
mode with matrix W ∈ RI×L yields Y ∈ RL×J×K , where
Y`jk =

∑I
i=1WijkWi`.

While matrix rank is a familiar concept, there are two
distinct notions of rank when generalizing to higher order
tensors. The rank of a tensor W is minimum the number of
rank-1 tensors into which it can be decomposed. This notion
of rank can be difficult to work with; e.g., even determining
a tensor’s rank is NP-hard. The second notion of rank, which
we use in this work, is the n-rank, which is a vector of length
n for an nth order tensor. The ith value is the matrix rank of
W<i>; i.e., the dimension of the space spanned by the mode-i



U1 U2

U3

=W G

Fig. 1. The Tucker decomposition.

fibers. Unlike matrix rank, in which the column rank and the
row rank are equal, the n-rank is generally different for each
mode. A tensor W ∈ RI×J×K with n-rank (n1, n2, n3) can
be compactly represented using a Tucker decomposition [1],
as shown in Figure 1. That is,

W = G ×1 U1 ×2 U2 ×3 U3 (1)

where G ∈ Rn1×n2×n3 is a compact core tensor, and the
columns of matrix Ui form a basis for the mode-i fiber space.

Because the n-rank function is non-convex and therefore
difficult to optimize, researchers often instead use a convex
relaxation known as tensor nuclear norm1 [2], [3]. The nuclear
norm of an N th order tensor, ‖W‖∗ is defined to be

‖W‖∗ = ‖W<1>‖∗ + ‖W<2>‖∗ + · · ·+ ‖W<N>‖∗ (2)

where ‖W<n>‖∗ is the matrix nuclear norm of the mode-n
unfolding; i.e. the sum of the singular values in that unfolding.
Like low rank matrices, low n-rank tensors can be thought
of as “simple” in a sense; we will see that using low n-
rank parameterized classifiers will lend itself to an intuitive
interpretation of the relationship between model input and
output. For an excellent introduction to tensors and a survey
of their use, we refer the reader to [4].

B. Log-Linear Models

Log-linear models have been used extensively for classifi-
cation. These models map an input vector x ∈ RD to a vector
of posterior probabilities y ∈ RC via the following simple
relationship, where vectors w1, w2, . . . , wC ∈ RD and scalars
b1, b2, . . . , bc are the model parameters:

P (Y = i|x) = yi =
exp(wT

i x+ bi)∑C
j=1 exp(wT

j x+ bj)
. (3)

Stated equivalently, y = softmax(WTx + b), where W ∈
RD×C is the matrix whose columns are the various wi and
b ∈ RC is the vector whose elements are bi. Training these
models to maximize likelihood involves solving a convex
optimization problem:

arg max
W,b

N∏
i=1

P (Y = ti|xi) (4)

where ti is the true class label for datapoint i. As defined,
the decision boundaries are linear, and the model makes

1Sometimes also referred to as the tensor trace norm.

x x

y

W

(a) cTELLAR model.

x x

y

G

U1 U2

U3

(b) fTELLAR model.

Fig. 2. Parameterizations for the TELLAR models.

use of only first order information of the inputs. Non-linear
classification can be performed in this framework by replacing
x in the above equation with φ(x), where φ denotes a non-
linear feature expansion. For example, for quadratic feature
expansion (i.e. polynomial expansion with degree 2), φ maps
from RD to RD2

, where the elements of φ(x) correspond to
all pairs of products of elements in x.

III. THE TENSOR LOG-LINEAR (TELLAR) MODEL

Our basic TELLAR model is visualized in Fig. 2a. The
input vector x ∈ RD is multiplied along two of the modes
of tensor W ∈ RD×D×C , and then the softmax function is
applied to the result to produce a probability distribution over
the C output classes:

y = softmax(z), where (5)
z = W ×1 x×2 x. (6)

Because x is multiplied along two modes of the tensor, the
model is capable of extracting second order features of the
input and thus learning non-linear decision boundaries. The
approach generalizes to higher orders, although only second
order features are explored in this work.

If W has full n-rank, this model is equivalent to doing a
quadratic feature expansion x̂ = φ(x) (x̂ contains all pairs of
products of elements in x) and then feeding x̂ into a standard
log-linear model. Non-linear feature expansion is a standard
technique for obtaining non-linear classifiers using underlying
linear methods. The primary downside to this explicit feature
expansion is the explosion of parameters (our model now has
O(D2C) parameters instead of the O(DC) used for a linear
classifier), which puts the model at risk of overfitting.

Either encouraging or constraining the tensor to have low
n-rank serves to regularize the model and decreases the risk
of overfitting. When W has n-rank [n1, n2, n3] the number
of free parameters is O (n1n2n3 +D(n1 + n2) + Cn3), as
shown by the Tucker decomposition. When n1 � D, n2 � D
and n3 � C this results in a dramatic reduction in parameters.
In short, tensor n-rank gives us a mechanism to carefully
control model complexity to achieve better balance between
bias and variance for the task at hand.



As shown in Fig 2b, when W has low n-rank with Tucker
decompositionW = G×1U1×2U2×3U3, it can be interpreted
as having three components: 1) the linear transformations of
x via U1 and U2, 2) a linear transformation of the output
y via U3, and 3) a multilinear interaction between the low
dimensional representations of the data and label via core
tensor G. If we let ei be the ith standard basis vector, this
interpretation is illustrated by the following:

zi = [W ×1 x×2 x]i (7)
= W ×1 x×2 x×3 ei (8)
= (G ×1 U1 ×2 U2 ×3 U3)×1 x×2 x×3 ei (9)
= G ×1 (U1x)×2 (U2x)×3 (U3ei) (10)
= G ×1 x̃1 ×2 x̃2 ×3 ỹ (11)

=

n1∑
i=1

n2∑
j=1

n3∑
k=1

Gijkx̃1,ix̃2,j ỹk (12)

Here x̃1 denotes the low dimensional continuous representa-
tion of x induced by the model by multiplying along the first
mode, x̃2 the same for the second mode and ỹ denotes the
low dimensional representation of class i. During training,
the linear transformations of x will be learned to enhance
discrimination, while the low dimensional continuous repre-
sentations of classes ỹ will learn to exploit similarity/overlap
in the tasks by placing similar classes near to each other in
this low dimensional space. The latter means that this can be
viewed as a multi-task learning problem: our model can pool
knowledge of several tasks together to make more accurate
predictions on each task individually (multitask learning has
been explored previously with low rank matrices [5], [6]).
These three terms, (x̃1, x̃2, ỹ) are multilinearly combined via
the core tensor, which governs how terms interact to produce
value zi. Two types of TELLAR models are considered.

A. cTELLAR

The convex TELLAR (cTELLAR) model is parameterized
by W directly (the parameterization illustrated in Fig. 2a).
Simply using maximum-likelihood as a training objective,
however, is unlikely to produce a result with low n-rank. To
encourage this property in our trained model, we can add a
convex tensor nuclear norm term to our objective and train as
follows:

arg min
W

γ‖W‖∗ − LL(D|W) (13)

Here LL(D|W) denotes the log-likelihood of our training data,
D. While the smooth, differentiable log-likelihood term is easy
to optimize, minimizing the tensor nuclear norm is somewhat
more complicated. To train the model, we employ the Convex
Multilinear Estimation Algorithm introduced by Signoretto
[2]. In practice, we use a slightly modified objective (inspired
by [7]) that allows us to more or less heavily regularize
different elements in the n-rank vector:

arg min
W

3∑
i=1

γi‖W<i>‖∗ − LL(D|W) (14)

The primary advantage of the cTELLAR approach is that train-
ing is convex, guaranteeing that we can converge to a globally
optimal solution. The major disadvantage is the computational
complexity: O(D2C) space is required and each iteration of
the algorithm requires a singular value decomposition on all
three tensor unfoldings.

B. fTELLAR

As a more computationally efficient alternative, we also
explore the use of a Tucker-factorized parameterization (the
parameterization in Fig. 2b). In this model, our parameters
are matrices U1 ∈ RD×n1 , U2 ∈ RD×n2 and U3 ∈ RC×n3

along with core tensor G ∈ Rn1×n2×n3 . Tensor W = G ×1

U1 ×2 U2 ×3 U3 is never explicitly constructed. Our training
objective then is

arg min
G,U1,U2,U3

−LL(D|W) (15)

Implicitly, this is a constrained optimization problem, re-
stricted to solutions for which the n-rank of W is upper
bounded by the n1, n2 and n3. Complementary to the cTEL-
LAR model, the fTELLAR model has advantages in space
and time complexity, but in exchange forfeits convexity. We
trained the model using stochastic minibatch gradient descent
using the Tensorflow toolkit [8].

C. Baselines

The view of our model as providing a means to interpolate
between the expressiveness of linear and quadratic models
motivates the following three baselines. The first is a standard
log-linear exponential model (denoted “Linear” in our experi-
ments), as defined in Section II-B, which represents a practical
(but not theoretical) lower-bound on the expressiveness of
the TELLAR model. Our second baseline is a full n-rank
TELLAR model; as noted above, this is equivalent to doing a
full quadratic feature expansion and then using a standard log-
linear model. This can be seen as follows, where z is defined
in Eqn. 6:

zk =
∑
i,j

Wijkxixj =
∑
`

Λk`φ(x)` = ΛT
k φ(x) (16)

where Λ ∈ RC×D2

= W<3> is just a reparameterization
of the weights, φ(x) ∈ RD2

is an explicit quadratic feature
expansion, and ` iterates over 1, 2, . . . D2. This is now in the
form of a log-linear exponential model, with class dependent
weights Λk, applied to features with an explicit feature expan-
sion. This baseline is denoted “Quadratic” in the experimental
results, and represents the upper-bound on expressiveness on
the expressiveness of TELLAR. Finally, we also report the
majority class baseline; that is, the model that always predicts
the class which was most common in the training set. This
baseline is denoted “Majority” in our experiments.

IV. PRIOR WORK

There have been several machine learning models that, like
TELLAR, involve some parameterization by a tensor. Many
of these are energy-based models [9], [10], [11], [12], [13].



Wine MSD Geo CTG
Ntr 3214 463715 530 1063
Nde 1628 25815 - -
Nte 1655 25815 529 1063
D 11 90 116 36
C 7 89 33 3

TABLE I
DATASET STATISTICS: TRAINING SET (Ntr ), DEVELOPMENT SET (Nde)
AND TEST SET (Nte) SIZES, DIMENSION OF THE INPUT DATA (D) AND

NUMBER OF CLASSES (C). WHEN Nde IS NOT LISTED, MODEL IS TUNED
USING 5-FOLD CROSS-VALIDATION THE TRAINING SET.

Notably, like TELLAR, the Gated Softmax Classifier [11] is
a parametric classification model. However, it uses a third-
order tensor to model interactions between input x, output y
and a latent hidden vector h. The hidden vector is efficiently
marginalized over, yielding a model that acts as a product of
experts over linear models. Like TELLAR, the Factored 3-Way
Restricted Boltzmann Machine [12], [13] models captures sec-
ond order structure by multiplying a tensor along two modes
by an input vector x. In contrast, however, it is a generative
model and the third mode corresponds to a hidden vector
h, which must then be marginalized over. In these energy-
based models, the parameter tensor is often represented in
a CANDECOMP/PARAFAC [14], [15] factored form, which
can be seen as a special case of the Tucker form in which
n1 = n2 = n3 and core tensor G is superdiagonal [4]. More
recently, tensors have been used to parameterize various neural
network models, including deep stacking networks [16], [17],
deep neural networks [18] and recursive neural networks [19],
[20]. In language processing applications, low rank (not low n-
rank) tensor-parameterized models were shown to be effective
in scenarios where the training data is limited, requiring more
careful control over model complexity [21].

V. EXPERIMENTS

We conducted a set of experiments to assess the effective-
ness of the cTELLAR and fTELLAR models.

A. Data

Our experiments make use of four standard, publicly avail-
able datasets from the UCI Machine Learning repository [22].
These datasets were selected to offer variety in terms of the
number of datapoints, input dimension and number of classes.
Dataset statistics are summarized in Table I.

1) Wine Quality: The Wine Quality dataset [23] takes 11
attributes of red and white wines and includes subjective
ratings by experts. Ratings were made on a scale of 1-10,
but only ratings of 3-9 appear in the data; we therefore
frame this as a seven-way classification task. The 4898 red
wine samples and 1599 white wine samples were combined,
randomly shuffled and then split at a roughly 50-25-25 ratio
into training, development and test sets.

2) Year Prediction MSD: In this this subset of Million Song
Dataset (MSD) [24], the task is to predict the release year
of a song (out of the set of 89 distinct years between 1922
and 2011) given 90 dimensional acoustic features produced

Model Wine MSD Geo CTG
Majority 0.451 0.082 0.070 0.866
Linear 0.452 0.079 0.301 0.866

Quadratic 0.534 0.080 0.034 0.866
cTELLAR 0.458 0.083 0.096 0.866
fTELLAR 0.534 0.087 0.339 0.867

TABLE II
TEST SET ACCURACIES ON THE WINE QUALITY (WINE), YEAR

PREDICTION MILLION SONG DATASET (MSD), GEOLOCATION OF MUSIC
(GEO) AND CARDIOTOCOGRAPY (CTG) DATASETS.

by the Echo Nest API. The large number of classes and
similarity between subsets thereof poses an interesting test
of our model’s ability to learn meaningful low-dimensional
representations of classes. The standard split between training
and test sets ensures that no artist shows up in both sets; we
evenly split the standard test set into our development and test
sets to inherit this property for our development set as well.

3) Geographical Origin of Music: This dataset [25] con-
sists of 116-dimensional acoustic features extracted using the
MARSYAS tool on 1059 songs. The task is to predict where,
out of a set of 33 distinct areas, the music originated. Given
the small size of this data, we performed a random 50-50 split
between training and test sets, and used cross-validation on the
training set in lieu of a development set.

4) Cardiotocograpy (CTG): The CTG dataset includes
2126 fetal cardiotocograms, from which 36 features are ex-
tracted. Each cardiotocogram is labeled as normal, suspect
or pathological. Like the “Geo” task above, due to the small
number of samples, we split 50-50 between training and test,
and perform cross-validation on the training set to tune.

B. Tuning

Several hyper-parameters were tuned, either on the devel-
opment set (Wine and MSD) or on the training set using five-
fold cross-validation (Geo and CTG). All hyper-parameters
were tuned with the Bayesian hyperparameter optimization
toolkit Spearmint [26]. For the cTELLAR model, we tuned
the regularization parameters γ1, γ2 and γ3. For the fTELLAR
model, we tuned the n-rank (n1, n2 and n3), learning rate,
minibatch size and weight initialization range.

C. Results and Analysis

The results of our classification experiments on the four
datasets outlined in Section V-A are summarized in Table II.
There are several interesting observations.

First, as expected, when there are relatively many samples
(Ntr) compared to the feature dimension (D), the more
complicated quadratic models offer better performance. Like-
wise, when there are relatively few samples compared to the
feature dimension, the linear model greatly outperforms. This
result agrees with standard intuition about the effect of model
complexity on the bias and variance trade-off.

Second, the fTELLAR model ties or exceeds the perfor-
mance of all other models on all four tasks, including the linear
model for small Ntr/D tasks and the quadratic model for large
Ntr/D tasks, suggesting that the ability to carefully control



model complexity via tensor n-rank provides a superior bias-
variance trade-off. On the Wine dataset, the optimal fTELLAR
model is in fact a full n-rank model (i.e. quadratic model).
This makes some intuitive sense, since this dataset has the
fewest features (D) and therefore increases model complexity
the least by doing this feature expansion. This property appears
to allow the model to avoid overfitting, even with the modest
training set size.

Third, the cTELLAR performance lags behind that of the
fTELLAR, sometimes exceeding linear and quadratic model
performance, but not always. With the cTELLAR model,
we exactly solve an approximation of our true objective
(minimizing tensor nuclear norm instead of tensor n-rank).
We hypothesize that, in at least some case, the advantages of
the convex objective are more than offset by the approximation
we have to make to the objective. This result, combined with
the fact that the fTELLAR model has both better space and
time complexity compared to the cTELLAR, points to the
fTELLAR model as being superior for the tasks considered
in this paper.

VI. CONCLUSIONS

In this paper we introduce two low n-rank parameterized
log-linear models: cTELLAR, in which the low n-rank struc-
ture is encouraged through tensor nuclear norm regularization
and fTELLAR, in which it is explicitly constrained by pa-
rameterizing the weight tensor by a Tucker decomposition.
These models multilinearly map the input vector (twice) to a
prediction, allowing the models to use second order feature
information in their predictions. With full n-rank structure,
the models act equivalently to a log-linear model applied to
features after an explicit quadratic feature expansion. Con-
trolling the n-rank gives us a precise mechanism to control
model complexity, and thus achieve a superior bias-variance
trade-off. In a set of experiments on four standard classification
datasets, specifically selected to offer a range of sizes in terms
of number of features, classes and datapoints, the factored
low n-rank model (fTELLAR) was found to consistently yield
the best performance. Notably, the fTELLAR model decreased
error by as much as 15.0%, 31.6% and 28.9% relative over
linear, quadratic and majority class baselines, respectively.

There are many ways this work could be extended. First, it
could be of interest to explore higher order features (beyond
quadratic); both TELLAR models would generalize naturally
by using higher order tensors. There are additional training
techniques one could apply, including different tensor n-rank
minimization algorithms (e.g. [27]) and other regularization
strategies (e.g. `2 regularization on the factored weights).
Finally, it would be of interest to explore these models on a
wider range of classification tasks to further explore the effect
of training set size, feature dimension and number of classes.

ACKNOWLEDGMENTS

The authors would like to thank the Nvidia corporation for
their donation of a Titan X GPU used in this research.

REFERENCES

[1] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, no. 31, pp. 279–311, 1966.

[2] M. Signoretto, L. De Lathauwer, and J. A. K. Suykens, “Nuclear norms
for tensors and their use for convex multilinear estimation,” ESAT-
SISTA, K.U.Leuven (Leuven, Belgium), Tech. Rep., 2010.

[3] R. Tomioka, K. Hayashi, and H. Kashima, “On the
extension of trace norm to tensors,” Oct 2010, http://arxiv-
web3.library.cornell.edu/abs/1010.0789v1.

[4] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[5] Y. Amit, M. Fink, N. Srebro, and S. Ullman, “Uncovering shared
structures in multiclass classification,” in Proc. ICML, 2007, pp. 17–
24.

[6] A. Argyriou, T. Evgeniou, and M. Pontil, “Convex multi-task feature
learning,” Mach. Learn., vol. 73, no. 3, pp. 243–272, Dec 2008.

[7] R. Tomioka, K. Hayashi, and H. Kashima, “Estimation of low-
rank tensors via convex optimization,” 2011. [Online]. Available:
http://arxiv.org/abs/1010.0789

[8] M. A. et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: http://tensorflow.org/

[9] R. Memisevic and G. Hinton, “Learning to represent spatial transfor-
mation with factored higher-order boltzmann machines,” Department of
Computer Science, University of Toronto, Tech. Rep. UTML TR 2009-
003, July 2009.

[10] G. W. Taylor and G. E. Hinton, “Factored conditional restricted boltz-
mann machines for modeling motion style,” in Proc. ICML, 2009.

[11] R. Memisevic, C. Zach, G. Hinton, and M. Pollefeys, “Gated softmax
classification,” in Proc. NIPS, 2010, pp. 1603–1611.

[12] M. Ranzato and G. E. Hinton, “Modeling pixel means and covariances
using factorized third-order boltzmann machines,” in Proc. CVPR, 2010,
pp. 2551–2558.

[13] M. Ranzato, A. Krizhevsky, and G. E. Hinton, “Factored 3-way restricted
boltzmann machines for modeling natural images,” in Proc. AISTATS,
2010.

[14] J. D. Carroll and J. J. Chang, “Analysis of individual differences in
multidimensional scaling via an n-way generalization of the “eckart-
young” decomposition,” Psychometrika, no. 35, pp. 283–319, 1970.

[15] A. Harshman, “Foundations of the PARAFAC procesdure: Models and
conditions for an “explanatory” multi-modal factor analysis,” UCLA
Working Papers in Phonetics, no. 16, pp. 1–84, 1970.

[16] B. Hutchinson, L. Deng, and D. Yu, “A deep architecture with bilinear
modeling of hidden representations: Applications to phonetic recogni-
tion,” in Proc. ICASSP, 2012.

[17] ——, “Tensor deep stacking networks,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1944–1957, 2013.

[18] D. Yu, L. Deng, and F. Seide, “The deep tensor neural network with
applications to large vocabulary speech recognition,” IEEE Transactions
on Audio, Speech and Language Processing, vol. 21, pp. 388–396, 2013.

[19] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng,
and C. Potts, “Recursive deep models for semantic compositionality over
a sentiment treebank,” in Proc. EMNLP, 2013.

[20] R. Socher, D. Chen, C. D. Manning, and A. Y. Ng, “Reasoning with
neural tensor networks for knowledge base completion,” in Proc. NIPS,
2013.

[21] B. Hutchinson, M. Ostendorf, and M. Fazel, “Low rank language models
for small training sets,” IEEE Signal Processing Letters, vol. 18, no. 9,
pp. 489–492, 2011.

[22] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[23] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling
wine preferences by data mining from physiochemical properties,”
Decision Support Systems, vol. 47, no. 4, pp. 547–553, 2009.

[24] T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman, and P. Lamere, “The
million song dataset,” in Proc ISMIR, 2011.

[25] F. Zhou, C. Q, and R. D. King, “Predicting the geographic origin of
music,” in Proc. ICDM, 2014.

[26] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Proc. NIPS, 2012.

[27] S. Gandy, B. Recht, and I. Yamada, “Tensor completion and low-n-rank
tensor recovery via convex optimization,” Inverse Problems, vol. 27,
no. 2, Feb 2011.


