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ABSTRACT

We develop and describe a novel deep architecture, the Tensor Deep
Stacking Network (T-DSN), where multiple blocks are stacked one
on top of another and where a bilinear mapping from hidden repre-
sentations to the output in each block is used to incorporate higher-
order statistics of the input features. A learning algorithm for the
T-DSN is presented, in which the main parameter estimation bur-
den is shifted to a convex sub-problem with a closed-form solution.
Using an efficient and scalable parallel implementation, we train
a T-DSN to discriminate standard three-state monophones in the
TIMIT database. The T-DSN outperforms an alternative pretrained
Deep Neural Network (DNN) architecture in frame-level classifica-
tion (both state and phone) and in the cross-entropy measure. For
continuous phonetic recognition, T-DSN performs equivalently to a
DNN but without the need for a hard-to-scale, sequential fine-tuning
step.

Index Terms— deep learning, higher-order statistics, tensors,
stacking model, phonetic classification and recognition

1. INTRODUCTION

Recently, a deep classification architecture built upon blocks of
single-hidden-layer neural networks (SHLNN) was proposed in
[1,2]. It was named the Deep Convex Network since the lower-layer
weights connecting the input and hidden layers in the SHLNNs may
be initialized effectively with a restricted Boltzmann machine and
the learning of the upper-layer weights can then be formulated as
a convex optimization problem with a closed-form solution. The
model can also be, perhaps more appropriately, named the Deep
Stacking Network (DSN) when we emphasize the mechanism in this
network for building up the deep architecture that shares the same
philosophy of “stacked generalization” [3]. The new deep architec-
ture presented in this paper, which we call the Tensor Deep Stack-
ing Network (T-DSN), improves and extends the DSN architecture
in two significant ways. First, the information about higher-order
statistics in the data, which was not represented in DSN, is now em-
bedded into T-DSN via a bilinear model with a tensor representation
of three-way interactions of the network weights. Second, while
the T-DSN retains the same linear-nonlinear interleaving structure
as DSN in building up the deep architecture, it shifts the major esti-
mation problem in the learning algorithm from the outer non-convex
optimization component to the inner convex one with a closed-form
solution.

One major motivation for developing the DSN is the lack of scal-
ability and parallelization in the learning algorithms for the Deep
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Neural Network (DNN) [4, 5]. In [1, 6], it was shown that all com-
putational steps of the learning algorithm for DSN are batch-mode
based, and are thus amenable to parallel implementation on a cluster
of CPU/GPU nodes. The same computational advantage is retained
for T-DSN introduced in this paper; we are able to parallelize the
gradient computation and function evaluation to permit scaling to
larger training sets. Section 4 discusses how the T-DSN general-
izes the DSN. Experimental evaluation for phone classification and
recognition is presented in Section 5, and we close with a discussion
of the model and future work in Section 6.

2. THE TENSOR DEEP STACKING NETWORK

In this section, we first briefly review the DSN, and then describe the
general architecture of the T-DSN and its properties.

2.1. A Review of DSN

The Deep Stacking Network (DSN) is a scalable deep architecture
amenable to parallel weight learning [1]. The DSN is trained in a su-
pervised, block-wise fashion, without the need for back-propagation
over all blocks. The DSN blocks are stacked to form the overall deep
network.

Each DSN block is a SHLNN. It has an upper-layer weight ma-
trix U that connects the sigmoidal nonlinear hidden layer h to the
linear output layer y, and a lower-layer weight matrix W that links
the input and hidden layers. Let the target vectors t be stacked into
the columns of T and assume the lower-layer weights W are known.
Then learning the upper-layer weight matrix U can be formulated as
a convex optimization problem and has a closed-form solution:

UT = TH†, (1)
where

H† = HT (HHT )−1, H = σ(WTX), (2)
and X is the data matrix, whose columns are the input vectors to
the SHLNN. In the lowest layer, X contains only the raw input
data, while in higher layers the input data may be concatenated with
one or more output representations from the previous layers. The
lower-layer weight matrix W can be optimized using an acceler-
ated gradient descent [7, 8] algorithm to minimize the squared error
f = ‖UTH −Y‖F . Embedding the solution of Eq.1 into the ob-
jective and deriving the gradient, we obtain

∇Wf = 2X
[
HT ◦ (1−HT ) ◦

[
H†(HTT )(TH†)−TT (TH†)

]]
,

(3)
where 1 is the matrix of all ones and ◦ denotes element-wise multi-
plication.



Fig. 1. Example T-DSN architecture with two complete blocks.

2.2. An Architectural Overview of T-DSN

In Fig. 1, we illustrate the modular architecture of a T-DSN, where
two complete blocks, one in red and one in blue, are stacked one on
another. The stacking operation of the T-DSN is exactly the same
as that for the DSN described in [1]. Unlike the DSN, however,
each T-DSN block has two sets of lower-layer weight matrices W(1)

and W(2). They connect the input layer with two parallel sigmoidal
hidden layers “Hidden 1” and “Hidden 2” in Fig. 1. Each T-DSN
block also contains a three-way, upper-layer weight tensor U that
connects the two hidden layers with the output layer.

Note if the T-DSN is used for regression or for classification,
then the basic architecture shown in Fig. 1 is sufficient. However, if
T-DSN is to be interfaced with a hidden Markov model (HMM) for
structured prediction such as continuous phonetic or word recogni-
tion as is the focus of this paper, it is desirable to convert the final
output in Fig. 1 into posterior probabilities via an additional soft-
max layer. Our experiments reported in Section 4 are obtained with
a softmax layer added to the top of Fig. 1.

2.3. Bilinear Predictions from Two Parallel Hidden Layers

We now elaborate on the key aspect of the T-DSN: modeling three-
way interactions among the two parallel hidden layers and the output
prediction layer in each T-DSN block. In place of the DSN’s linear
mapping from the hidden units h to the output units y, the T-DSN
uses a bilinear relationship from the two hidden representations, h(1)

and h(2). The upper layer is thus parameterized by a weight tensor,
U . Formally, the predictions y from a T-DSN are defined as

y =

 h(1)
TU1h(2)

...
h(1)

TUCh(2)

 , where h(j) = σ(W(j)
Tx)T (4)

and Uk ∈ RL1×L2 are class-dependent matrix slices of the
tensor U . The connection to the DSN can be illuminated by
some changes in notation. First, note that h(1)

TUkh(2) =

vec(Uk)T vec(h(1)h
T
(2)) =

∑L1
i=1

∑L2
j=1 ukijh(1)ih(2)j ; that is, it

is a weighted sum of the products between each pair of elements of

Fig. 2. Equivalent architecture to the bottom (blue) block of T-DSN
in Fig. 1 where the tensor is unfolded into a large matrix.

h(1) and h(2). If we let h̃ ∈ RL1L2 denote a vector containing all
pairs of products between h(1) and h(2), and ũk the vector of corre-
sponding weights, then hT

(1)Ukh(2) = ũT
k h̃. Stacking the ũk into

a matrix Ũ = [ũ1 ũ2 · · · ũC], and h̃n for each data point into
a matrix H̃ = [h̃1 h̃2 · · · h̃N], it follows that y = Ũh̃ and, in
matrix form, that Y = ŨH̃.

This leads to the same prediction equation as in DSN, but with a
transformed hidden representation h̃ that contains multiplicative in-
teractions between h(1) and h(2), permitting second-order statistics
of the input data to be included in an abstract and parsimonious man-
ner. Fig. 2 gives an equivalent architecture of the bottom block in
Fig. 1, illustrating how the two hidden layers are expanded into an
implicit hidden layer with all pairwise products. The relationship
between the matrices of explicit (low-dimensional) hidden units,
H(i) = σ(W(i)

TX), and matrix of implicit (high-dimensional) hid-
den units H̃, is given by

H̃ = H(1) �H(2).

By� we denote the Khatri-Rao product [9], which is a column-wise
Kronecker product, and achieves the effect of multiplying all pairs
of values within each column.

3. LEARNING T-DSN PARAMETERS

Due to the equivalence of the architectures shown in Fig.1 and
Fig. 2, learning Ũ, the unfolded representation of tensor U , given
the implicit hidden layer’s output becomes the same as that in the
DSN. Since the implicit hidden layer’s output is a deterministic func-
tion of the lower-layer weight matrices, we only need to determine
W(1) and W(2) to train a T-DSN block.

To train a T-DSN block using first order methods, we need
to calculate the gradients of the squared error objective function
with respect to W(1) and W(2). These gradients have a similar
form to that of the DSN (Eq. 3), but must be modified to ac-
count for the Khatri-Rao product. Using the fact that ∂(H(1) �
H(2)) = (∂H(1)) � H(2) + H(1) � (∂H(2)), and letting Θ de-

note H̃†(H̃T
T

)(TH̃†)−TT (TH̃†) we can modify the derivation
in [1] to obtain the following gradients:

∇W1f = 2X
[
HT

(1) ◦ (1−HT
(1)) ◦Ψ(1)

]
, (5)

and
∇W2f = 2X

[
HT

(2) ◦ (1−HT
(2)) ◦Ψ(2)

]
(6)



where Ψ(1)ij =
∑L2

k=1 h(2)kjΘ((i−1)L2+k),j and Ψ(2)ij =∑L1
k=1 h(1)kjΘ((k−1)L1+i),j . The Ψ matrices have the effect of

bridging the high dimensional representation used in Θ with the
low dimensional representation in H(i), and are needed due to the
Khatri-Rao product. In contrast, the DSN has only a single hidden
representation H(1), which has the same dimension as H̃, so Θ is
used directly in place of Ψ.

With the above gradients, we optimize the objective via the L-
BFGS method using the Poblano optimization toolbox [10]. Typ-
ically, a T-DSN block is trained with 10 to 15 iterations and with
up to 7 line-search function evaluations per iteration. Weight matri-
ces W(1) and W(2) are initialized with random values in the range
[−1, 1].

From Eqs. 5 and 6, it is clear that the bulk of the gradient
computation is in matrix operations, including matrix multiplies and
element-wise matrix products. To speed up computation and to re-
duce the memory requirements, we have successfully parallelized
these matrix operations to run on a CPU cluster. The ability to par-
allelize training in this manner is a key reason for the scalability of
T-DSN training.

4. CONNECTIONS BETWEEN T-DSN AND DSN

The T-DSN can be reduced to a DSN by forcing one of the two paral-
lel hidden unit sets in each T-DSN block to have size one. Although
the DSN can be considered to be a special, extremely asymmetrical,
case of T-DSN, we have found empirically that the more symmet-
ric the numbers of the two sets of hidden units in the T-DSN are,
the better the classification performance. We conjecture that this is
due to the fact that the symmetric case maximizes the ratio of im-
plicit feature dimension over explicit feature dimension, and thus
makes the best use of the parameters. The key advantage of the
non-degenerated T-DSN (i.e., roughly equal number of hidden units
in each set) over the degenerated one (i.e., DSN) is the new ability
to capture higher-order feature interactions or correlations. In ad-
dition, the T-DSN typically has only 50 to 100 units in each of the
two sets, which is substantially smaller than the size of the hidden
layer in a DSN with a typical size of 3000. Hence, the parameter
balance is drastically shifted from the lower-layer weights toward
the upper-layer ones, the latter being much easier to optimize due
to the closed-form solution. The significantly smaller hidden repre-
sentation size in T-DSN has the further strength of bottlenecking the
data. This aids the “stackability” in the deep architecture by provid-
ing stacking flexibility. That is, one can concatenate the raw data
not only with the module’s prediction layer, but instead with h(1)

and h(2), or even concatenating all these three sets without dramati-
cally increasing the input dimension in the higher-level blocks. Such
flexibility is difficult to achieve by the DSN.

The T-DSN objective is identical to that of the DSN, with U
replaced by Ũ and H replaced by H̃. This similarity allows us
to exploit much of the learning machinery developed for the DSN
to train the T-DSN, including the parallel implementation discussed
previously.

5. EXPERIMENTS
5.1. Experimental setup
We now report our experiments using the popular speech database
TIMIT. The speech data is analyzed using a 25-ms Hamming win-
dow with a 10-ms fixed frame rate. We represent the speech using
first- to 12th-order Mel frequency cepstral coefficients (MFCCs) and
energy, along with their first and second temporal derivatives. The

data are normalized to have zero mean and unit variance. All exper-
iments used a context window of 11 frames. This gives a total of
39 · 11 = 429 elements in each feature vector as the raw input to
T-DSN. For the prediction at each layer of the T-DSN, we used 183
target class labels (i.e., three states for each of the 61 phones), which
we call “phone states,” with a one-hot encoding.

We use the standard TIMIT data sets. The training set consists
of 462 speakers, with all SA sentences removed. The total number
of frames in the training data is 1,124,589. The development set
contains 50 speakers, with a total of 122,488 frames, and is used for
tuning. Results are reported using the standard 24-speaker core test
set consisting of 192 sentences with 7,333 phone tokens and 57,920
frames.

The DSN and T-DSN are both trained in batch-mode, which is
practical due to our parallelization of their learning algorithms.

5.2. Experimental results
The results reported in this section are obtained using the main T-
DSN architecture illustrated in Fig.1, where the number of stack-
ing blocks is 13, and an additional hidden layer and softmax layer
are added to the top of this T-DSN for computing frame-level state
posterior probabilities. The two sets of hidden units in each block
contain an equal number of 70 nodes.

In Table 1, we show the performance of the T-DSN (first row) in
terms of four measures: 1) Frame-level state error rate (Fr State Err);
2) cross entropy (Cr-Ent) in nats; 3) frame-level phone classification
error rate (Fr Ph Err), and 4) continuous phonetic recognition error
rate (Ph Rec Err). For the state error rate, the total number of classes
is 183. In computing the frame-level phone classification error rate,
we map the 183 states to 61 phone classes which are then collapsed
into 39 classes using a standard phone mapping. Cross entropy is
the average of log posterior probabilities over all frames in the test
set, computed from the softmax layer. The higher the cross entropy,
the better the performance. To obtain the continuous phonetic recog-
nition error rate, we used a phone decoder, which applies dynamic
programming over each of the full test sentences. A standard bigram
phone language model is used during decoding. The results in Table
1 demonstrate superior performance of T-DSN over DSN in all four
measures (Row 1 vs. Row 2).

It is also interesting to compare the performance of T-DSN
with two other deep architectures, the conventional DBN-initialized
DNN trained with the frame-level cross entropy criterion (labeled as
“DNN” in Row 3 in Table 1) and that trained with the full-sequence
maximum mutual information (MMI) criterion [11] (final row in Ta-
ble 1). The original motivation of this work was to make the learn-
ing of deep networks scalable by replacing stochastic gradient de-
scent algorithm for fine tuning with the parallelizable batch-mode
learning. As both DSN and T-DSN do “fine tuning” only within the
block rather than through the entire deep network as carried out for
DNN, we expected at best a matching performance to DNN. Sur-
prisingly, while DSN has not matched the low phonetic recognition
error rate achieved by DNN, T-DSN produces a slightly lower error
rate (22.8% vs. 22.9%). And more surprisingly, for the measures
of frame-level error rates and cross entropy, both DSN and T-DSN
outperform DNN and even MMI-DNN.

Fig. 3 illustrates the performance of a single T-DSN block, with
hidden unit sizes of L1 = L2 = {70, 80, 98}. L1 = L2 = 98
marks the break-even point, when the T-DSN has the same num-
ber of overall parameters (lower and upper layer weights) as a DSN
with 3000 hidden units, although the T-DSN still has far fewer free
(lower layer) parameters. Despite random initialization, the learning



Networks Fr State Err Cr-Ent Fr Ph Err Ph Rec Err
T-DSN 40.9% -2.02 21.0% 22.8%
DSN 41.8% -2.16 22.9% 24.6 %
DNN 45.0% -2.28 23.5% 22.9 %
MMI-DNN 43.0% -2.20 23.0% 22.2 %

Table 1. Performance comparison between the T-DSN and three
other deep architectures on the TIMIT core test set. The reported
performance measures are: frame-level state error rate, cross en-
tropy, frame-level phone classification error rate, and continuous
phonetic recognition error rate.

Fig. 3. Single layer T-DSN test set performance, by hidden unit size.

reliably converges to a good solution, suggesting the absence of ex-
cessive local optima. In contrast, initializing the DSN with random
weights leads to poor and unpredictable single-layer performance,
nearly always above 60% frame error rate. This robustness to initial-
ization is an important practical advantage of the T-DSN.

6. DISCUSSION AND CONCLUSION
A new architecture of T-DSN for deep learning is presented, gener-
alizing the earlier DSN architecture. The principal novelty is to split
the original large hidden layer (in each block) into two smaller ones,
and bilinearly map them to the predictions so as to capture higher or-
der interactions between features. T-DSN retains the computational
advantage of DSN in parallelism and scalability while learning the
weight parameters. Note the parallelism in learning for T-DSN can
be implemented either in a CPU cluster (as carried out in the current
study) or in a GPU cluster. A single GPU parallelization speed up
over CPU can be between 10-100 times but CPU programming is
much easier.

Modeling covariance structure directly on raw speech data,
rather than on the more compact hidden feature layers as achieved in
T-DSN, was previously proposed in an architecture called mcRBM
[12]. One key distinction is the different domains in which the
higher-order structure is represented, one in the data and another in
the hidden units. In addition, mcRBM cannot be extended to deeper
layers due to the model and learning complexity, and it has to rely
on factorization to reduce the cubic growth in size of the weight pa-
rameters. Factorization incurs very high computational cost, which,
together with the need for high cost of Hybrid Monte Carlo in learn-
ing, makes it impossible to scale up to large data sets. Fortunately,
these difficulties are removed in T-DSN. Specifically, the same in-
terleaving of linear-nonlinear layers inherited from DSN makes it
straightforward to stack up deeper layers, and the closed-form solu-
tion for the upper-layer weights enables much more efficient train-
ing. Because of the relatively smaller sizes in the multiplicative hid-
den layers, no factorization is needed for the T-DSN’s weights.

Compared with our earlier DSN architecture, two further advan-
tages of T-DSN are 1) a potential extension to incorporate speaker
and/or environmental factor-gating (by training one of the hidden
layers to encode speaker or environmental factors), and 2) a new
stacking mechanism where compact dual hidden representations can
be concatenated with input data. Our preliminary work on both of
these fronts is promising. With the parallelized implementation of T-
DSN already in place, we expect meaningful improvements in real-
world speech recognition tasks. Further, encouraged by our recent
results with DNN and DSN in applications of speech understand-
ing [13] and in speech attribute detection [14], we expect greater
success with the use of T-DSN in these and other applications.
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