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ABSTRACT

As more data becomes available for a given speech recognition task,
the natural way to improve recognition accuracy is to train larger
models. But, while this strategy yields modest improvements to
small systems, the relative gains diminish as the data and models
grow. In this paper, we demonstrate that abundant data allows us
to model patterns and structure that are unaccounted for in standard
systems. In particular, we model the systematic mismatch between
the canonical pronunciations of words and the actual pronunciations
found in casual or accented speech. Using a combination of two
simple data-driven pronunciation models, we can correct 5.2% of
the errors in our mobile voice search application.

Index Terms— Pronunciation model, non-parametric model,
casual speech

1. INTRODUCTION

As more data becomes available for a given speech recognition task,
the natural way to improve recognition accuracy is to train larger
acoustic models. Although this strategy provides modest improve-
ments to small systems, it results in diminishing relative gains as the
data and models continue to grow [1].

Alternatively, abundant data can be used to model structures and
variabilities in the data that are unaccounted for in the standard sys-
tem. One good example of this style is the cluster modeling ap-
proach of Beaufays [2], which automatically trains several special-
ized acoustic models instead of one model to cover all scenarios.
This is the style of the approach presented here, where we use a very
large data set to address the problem of pronunciation variability.
When causal or accented speech cause the observed pronunciations
diverge from their canonical forms, the acoustic model must bridge
the gap. Although triphone models can account for some of this vari-
ation, variance in pronunciation has been found to be dependent on
speaking rate and word frequency [3], which suggests that triphone
context may be too limited.

Figure 1 illustrates several ways that pronunciation variability,
the relationship between words and acoustics, can be modeled. One
path represents the standard approach: a word sequence generates a
phonetic sequence though a fixed pronunciation lexicon, which then
generates acoustics through an acoustic model. The primary draw-
back of this approach is that the acoustic model must handle any
differences between expected phones from the lexicon and realized
phones in the acoustics. A substantial amount of research has been
invested into addressing this issue (see [4] for an early survey paper).
In particular, many researchers have worked on automatic dictionary
learning [5, 6, 7, 8, 9]. However, simply increasing the number of
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Fig. 1. There are several ways that phonetic information bridges
acoustics and word sequences.

available pronunciations has been found to increase search complex-
ity, and in doing so offset the gains of better pronunciation modeling
(e.g., [10]).

Instead, one can incorporate a distortion model that bridges the
gap between the dictionary-based phonetic sequence and the acous-
tics. Here any discrepancy between the dictionary phonemes and
acoustics is decoupled into a distortion model, which governs pho-
netic distances, and the acoustic model, which is relieved of some
of its burden. Researchers have considered a number of forms for
the distortion model, including parametric context-independent and
-dependent probabilistic phone edit models [11, 12, 13], tree-based
models [14], and phonological rule-based models [15].

A third approach directly models word labels as being generated
from a decoded phonetic sequence. Arbitrary features of an uncon-
strained phonetic decoding may be used, e.g. existence, expectation,
or Levenshtein features employed in a segmental conditional random
field framework [16, 17].

The method we propose in this work models distributions over
possible decoded phone strings given hypothesized word strings. We
interpolate a large non-parametric empirical model, that explicitly
models a phone string distribution for each word, with a smaller
parametric model. Using millions of utterances, we find that the em-
pirical model approximately recreates the lexicon, while augment-
ing it with missing pronunciations, dialectal variants, and common
reductions. A lattice rescoring experiment demonstrates a 5.2% rel-
ative reduction in word error rate.

The remainder of the paper is organized as follows. Section 2 in-
troduces parametric, non-parametric and interpolated models of pro-
nunciation; in Section 3, we discuss our experiments and results; and
we offer conclusions and areas of future research in Section 4.



Missing Pronunciations Dialectal Variants
license l ay s ax n z french f r ae n ch
corps k ao r cinemas s eh n ax m ax s

Common Reductions Common Phone Rec. Errors
donald d aa n ax l civic s ih t ih k

redmond r eh d m ax n spice s t b ay s

Fig. 2. Example pronunciations not contained in the lexicon.

2. MODELS OF PRONUNCIATION

The goal of our pronunciation models is to estimate the distribution
P (po|w) of observed phone sequences po for each word w in the
lexicon. These observed phone sequences may be obtained via hu-
man annotation, or more likely, an unconstrained phonetic decoding.
We consider several forms for P , including a non-parametric empiri-
cal model, two kinds of parametric model, and an interpolated model
that combines their relative strengths.

2.1. Non-Parametric Empirical Model PE

When sufficient data is available, we can estimate P (po|w) directly
for all words appearing in our training data, using:

PE(po|w) =
C(w, po)∑
p′o
C(w, p′o)

.

Here C(w, po) is the number of times word w was has observed
pronunciation po in the training data. To obtain these counts, we
separately perform an unconstrained phonetic decoding and a word
alignment of all training utterances, and then assign phone sequences
to words based on timing and sequence information.

Although the empirical model learns to assign probability mass
near the existing pronunciation dictionary entries, it also learns sev-
eral types of patterns that did not originally exist. Figure 2 contains
pronunciations that were the most probable for the given word, but
did not exist in the ASR pronunciation dictionary. They fall into four
classes: legitimate pronunciations that were missing from the lexi-
con, dialectal variants, common phonetic reductions of words, and
systematic phone recognition errors. The last category highlights the
importance of matching the process used to produce observed pro-
nunciations in training and test.

The empirical model has a number of advantages: it serves as
a data driven way to heal mistakes the lexicon, it yields relatively
sharp models of pronunciation, and it models lexically-dependent
pronunciation variation. However, it has limitations: the empirical
model may poorly estimate probabilities for infrequent words, and
does not generalize to unseen words. To handle these cases, we need
a parametric model to which we can back off.

2.2. Parametric Models PM

Our parametric models are smooth in the sense that they assign a
non-zero probability to all possible phone sequences. They compute
P (po|w) by marginalizing over dictionary pronunciations, pw:

PM (po|w) =
∑
pw

P (po, pw|w) =
∑
pw

PD(po|pw)PP (pw|w)

where PD is a distortion (equivalently error or edit) model similar
to the joint multigram model of [18], and PP is a standard (possibly
uniform) pronunciation model.

ae p ax l
ae b ε l

ae p ax l
ae ε b l

Fig. 3. Two minimum Levenshtein alignments of reference sequence
[ae p ax l] to observed sequence [ae b l].

PD gives a distance between two phone sequences. In the mod-
els we will consider, it decomposes over the distances between in-
dividual phones in po and pw. To do this decomposition, we first
need to associate individual phones in po with those in pw; that is,
we need to align po to pw.

2.2.1. Alignments

The process of aligning two phone sequences pairs individual phones
in one sequence with individual phones in another. If a phone is not
paired with any phone in the second sequence (e.g. if the sequences
are of different length), an ε is inserted into second sequence and
the phone is aligned to ε. We denote the alignment of pw to po as
A = ((r1, o1), . . . , (rN , oN )), where ri is a reference phone (or ε)
and oi is the observed phone (or ε) to which it is aligned.

One common approach to aligning two phone sequences is to
compute the minimum Levenshtein distance alignment ALev . How-
ever, as Fig. 3 illustrates, there may be multiple minimizers of the
Levenshtein distance. Although both alignments in this figure obtain
the minimum distance, the first offers a more probable generative ex-
planation of the observed phone sequence.

2.2.2. Context Independent Model

Given an alignment A, the context independent edit model assumes
a very simple form:

PDCI (po|pw, A) =
N∏
i=1

p(oi|ri) (1)

The only parameters of this model are the O(|P|2) entries its con-
ditional probability table, where P is the alphabet of phones. Given
an alignment, these parameters are estimated using maximum likeli-
hood: P (o|r) = C(r, o)/

∑
o′ C(r, o′), where C(r, o) is the num-

ber of times reference symbol r is aligned to observed symbol o in
the training data.

Given a trained CI model, one can efficiently compute the align-
ment ACI that maximizes Eqn. 1. This alignment can be found in
O(N2) time using a variant of the Levenshtein dynamic program-
ming algorithm, with pairwise alignment cost − log(p(o|r)). We
can therefore train the CI model iteratively, starting with a Leven-
shtein alignment:

1. Given an alignment of the training data, update parameters
2. Given an updated model, re-align the training data

In practice, we find that training takes 5-15 iterations to converge.

2.2.3. Context Dependent Model

It is intuitive that the probability of a given edit is influenced by its
context. A straightforward generalization of the context independent
model is to additionally condition on the the previous M edits; that
is, to be build models of the form:

PDCD (po|pw, A) =
N∏
i=1

P (oi|ri, oi−1, ri−1, . . . , oi−M , ri−M )



This model has O(|P|2M+1) parameters, the elements of the con-
ditional probability table. For small M (e.g. M = 2 or 3) and
moderate amounts of data (e.g. 500K words), the parameters can be
well estimated with maximum likelihood.

2.3. Interpolated Model PI

Ideally, we would like to rely on the empirical model when it is well
estimated, and back off to a (smoother) parametric model when it is
not. Our interpolated model PI does exactly this:

PI(po|w) = αwPE(po|w) + (1− αw)PM (po|w).

The word dependent interpolation weight is given by αw =
C(w)/(C(w) + K). C(w) is the number of times word w is
observed in the training data. K is a tunable parameter, and can
be interpreted as the amount of count mass allocated to PD . For
words not seen during training, αw = 0, and the parametric model
is used exclusively; on the other hand, αw ≈ 1 for words that have
been observed a large number of times. In practice, we find that
K ∈ [1, 100] works well.

3. EXPERIMENTS

3.1. Lattice Rescoring

We conducted lattice rescoring experiments to compare the effec-
tiveness of our various models of pronunciation:

1. We generate a word lattice using an HMM based system,
whose acoustic model contains 135K diagonal Gaussian
components shared by 22K states, which in turn are shared
by 9.7K HMMs; its language model is a trigram model over
a 65K lexicon, with 4.7M n-grams.

2. We perform a phonetic decoding using the same acoustic
model with a trigram language model containing 16K n-
grams over a vocabulary of 45 phones. This provides our
one-best observed phone sequence.

3. For each word w in the lattice (with recognized pronuncia-
tion variant pw), we use w’s time boundaries to identify the
observed phone sequence po in the span of w, and augment
the lattice with the pronunciation model score P (po|w, pw)
(using any of the models in Section 2).

4. The new lattice score for each word is a weighted sum of the
existing acoustic model score, the existing language model
score, and the new pronunciation model score. These weights
are tuned on development data.

Because the empirical model has no means to assign probabil-
ities to unseen words, it cannot be used alone in step 3 above. To
bypass this problem, we assign an ε probability to all pronunciations
for words that were not seen in training. This permits us to use the
empirical pronunciation models in the above rescoring framework.

3.2. Data

Our data come from the Windows Live Search for Mobile voice
search task [19]. We divide the data into a 2.9M utterance (6.3M
word) training set, 8.7K utterance (18.9K word) development set,
and 12.7K utterance (27.2K word) test set. Some of training data
labels are not human annotated, but instead are “lightly supervised”
transcriptions in which we have high confidence.

Method Dev Test
Baseline 34.3 34.8
CI 32.8 33.6
CD (M = 1) 32.4 33.5
CD (M = 2) 32.4 33.6
Pron Dict 33.0 33.6
Empirical 32.4 33.1
Interpolated 32.3 33.0

Table 1. WER by model of pronunciation.

Lev. Aligned CI Aligned
CI Model 0.9% 3.4%
CD Model (M = 1) 3.4% 3.7%

Table 2. WER reduction over baseline by model and alignment.

3.3. Results

We first compare models in Table 1. This table contains four sec-
tions: the baseline, parametric models, non-parametric models, and
the interpolated model.

Of the parametric models, the context dependent model condi-
tioned on the previous M = 1 edits performs the best, though the
context independent model performs comparably. All three paramet-
ric results use the alignment ACI instead of ALev; see Section 3.4
for some discussion of the effect of alignment on performance.

The “pron dict” method rescores using a pronunciation dictio-
nary with relative frequencies estimated on the training set to rescore
the lattice. This method rewards phonetic “exact matches” (observed
pronunciation matches dictionary pronunciation), which does im-
prove performance over the baseline. This is consistent with pre-
viously reported results [17]. Performance is further improved using
our empirical model.

Finally, moving to our more general interpolated model pre-
serves the performance gains. We set parameter K = 1, having
tuned on development data. This interpolated model corrects 5.2%
of the errors made by the baseline.

3.4. Analysis

There are a number of useful observations that can be drawn from
these experiments. First, Table 2 illustrates the interaction between
context and alignment method. The left column, which uses the min-
imum Levenshtein alignmentALev , is consistent with previous find-
ings [13]: introducing context improves the performance. The right
column, however, suggests that using CI alignmentACI gives a sim-
ilar boost in performance without the need for context. This suggests
that one of benefits of context in the Levenshtein case is to learn to
correct its sub-optimal alignments.

In Table 3, statistics of the empirical model by count cutoff
are given. A model with count cutoff C means that all word-
pronunciation pairs occurring fewer than C times are pruned from
the empirical model. The first observation is that the empirical
model tends to contain fewer words than the pronunciation dic-
tionary, and more pronunciations per word. However, as listed in
the Match column, these empirical pronunciations “cover” a larger
portion of the test data; that is, they include the observed pronuncia-
tions in test utterances. The second observation is illustrated by the
pronunciations per match (P/M) column: although there are a small



Count Cutoff Words Prons. P/W Match P/M
1 44814 1739981 38.8 7784 223.5
5 10522 103417 9.8 5808 17.8
20 4423 23166 5.2 4579 5.1
50 2461 9037 3.7 3804 2.4

100 1541 4440 2.9 3238 1.4
200 995 2245 2.3 2830 0.8

1000 327 511 1.6 1988 0.3
5000 84 120 1.4 1095 0.1

Pron Dict 64601 91513 1.4 2484 36.8

Table 3. Effect of count cutoff pruning on the empirical model.
“Match” indicates how many test set utterances (out of 12,758) are
covered by the model. P/W, P/M are the prons. per word, per match.

number of very common word-pronunciation pairs, an exponential
number of new pronunciations must be added to continue to cover
utterances in the test data. One can also interpret the P/M column as
a measurement of efficiency. It takes only minor pruning of counts
to create a more efficient model than the pronunciation model; this
better fit is one advantage of learning pronunciations in a data-driven
fashion.

4. CONCLUSIONS

We introduce a non-parametric empirical model that exploits abun-
dant training data to directly learn pronunciation variation. Inter-
polating the empirical model with a parametric model yields the
best performance, with a relative improvement of 5.2% in WER
over the baseline. For the voice search task, the empirical model
alone contributes most of the gain, and provides good coverage of
the test data. We also find evidence that much of the benefits of in-
troducing context-dependency to a parametric distortion model that
uses Levenshtein distance alignments can be obtained by a context-
independent model that uses an optimal alignment. Further, this op-
timal alignment can be computed with no additional run-time cost
over the standard Levenshtein dynamic programming algorithm.

There are a number of ways in which this work could be ex-
tended. First, closer integration with acoustic model training is
likely to yield sharper distributions and a tighter fit to the data.
Second, estimating word-pronunciation co-occurrence counts in
semi-supervised fashion (e.g. through word recognition instead of
forced alignment) would broaden its applicability to a wide range of
speech genres and tasks. Finally, it would be of interest to modify
our models to factor out the distinct phenomena that affect pronun-
ciation (e.g. accent, dialect, recognition errors). Aside from better
modeling the data, such an approach could be used for speaker
adaptation.
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